A skeletonization algorithm by maxima tracking on Euclidean distance transform

Abstract A simple and efficient algorithm using the maxima tracking approach on Euclidean distance transform to detect skeleton points is presented. The advantages of the skeleton obtained are: (1) connectivity preservation; (2) single-pixel in width; and (3) its locations as close as to the most symmetrical axes. Besides, the condition of the least slope change of skeleton is used to ensure the fairness of the digital medial axes. With the least effort, the algorithm can be modified to eliminate non-significant short skeletal branches originating from the object contour while the critical shape-informative medial axes are preserved.

[1]  Zicheng Guo,et al.  Parallel thinning with two-subiteration algorithms , 1989, Commun. ACM.

[2]  P. Danielsson Euclidean distance mapping , 1980 .

[3]  Ching Y. Suen,et al.  A fast parallel algorithm for thinning digital patterns , 1984, CACM.

[4]  Patrick Shen-Pei Wang,et al.  A comment on “a fast parallel algorithm for thinning digital patterns” , 1986, CACM.

[5]  Chung-Ta King,et al.  A two-scan algorithm and architecture to a root for morphological filters , 1990, Ninth Annual International Phoenix Conference on Computers and Communications. 1990 Conference Proceedings.

[6]  Gabriella Sanniti di Baja,et al.  A One-Pass Two-Operation Process to Detect the Skeletal Pixels on the 4-Distance Transform , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Wayne Niblack,et al.  Generating skeletons and centerlines from the medial axis transform , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[8]  Richard W. Hall,et al.  Fast parallel thinning algorithms: parallel speed and connectivity preservation , 1989, CACM.

[9]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[10]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[11]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[12]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[13]  Roland T. Chin,et al.  One-Pass Parallel Thinning: Analysis, Properties, and Quantitative Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Ronald H. Perrott,et al.  An improved parallel thinning algorithm , 1987, CACM.

[15]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[16]  Albert M. Vossepoel,et al.  A note on "distance transformations in digital images" , 1988, Comput. Vis. Graph. Image Process..

[17]  Nabil Jean Naccache,et al.  SPTA: A proposed algorithm for thinning binary patterns , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Lawrence O'Gorman,et al.  K × K Thinning , 1990, Comput. Vis. Graph. Image Process..

[19]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[20]  Paul C. K. Kwok,et al.  A thinning algorithm by contour generation , 1988, CACM.

[21]  Roland T. Chin,et al.  Analysis of Thinning Algorithms Using Mathematical Morphology , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.