Three-Dimensional Vibrations of Layered Piezoelectric Cylinders

A semi-analytic discrete-layer model is presented for the three-dimensional free vibration analysis of laminated cylindrical shells with distributed piezoelectric layers. The discrete-layer theory combines finite-element approximations through the shell thickness with Fourier and/or power series in the axial and circumferential directions. This approach can be applied to cylindrical shells consisting of single or multiple layers. Frequencies for the general vibration of solid elastic cylinders show excellent agreement with those in the literature. Results are also presented for the general vibration of laminated piezoelectric cylindrical shells.

[1]  Paul R. Heyliger,et al.  DISCRETE LAYER ANALYSIS OF AXISYMMETRIC VIBRATIONS OF LAMINATED PIEZOELECTRIC CYLINDERS , 1996 .

[2]  Stanley B. Dong,et al.  Frequency Spectra of Laminated Piezoelectric Cylinders , 1994 .

[3]  D. Hitchings,et al.  The finite element analysis of the vibration characteristics of piezoelectric discs , 1992 .

[4]  A. Jilani,et al.  The free vibrations of inhomogeneous elastic cylinders and spheres , 1992 .

[5]  J. N. Reddy,et al.  A plate bending element based on a generalized laminate plate theory , 1988 .

[6]  J. N. Reddy,et al.  A generalization of two-dimensional theories of laminated composite plates† , 1987 .

[7]  T. P. Pawlak,et al.  Three-Dimensional Finite Elements for Analyzing Piezoelectric Structures , 1986, IEEE 1986 Ultrasonics Symposium.

[8]  M. Naillon,et al.  Analyse de structures piézoélectriques par une méthode d'éléments finis , 1983 .

[9]  H. Chung,et al.  Free vibration analysis of circular cylindrical shells , 1981 .

[10]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[11]  H. F. Tiersten,et al.  Linear Piezoelectric Plate Vibrations , 1969 .

[12]  E. P. Eernisse,et al.  Variational Evaluation of Admittances of Multielectroded Three-Dimensional Piezoelectric Structures , 1968, IEEE Transactions on Sonics and Ultrasonics.

[13]  E. P. Eernisse Variational Method for Electroelastic Vibration Analysis , 1967, IEEE Transactions on Sonics and Ultrasonics.

[14]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .