Modeling Transit and Intermodal Tours in a Dynamic Multimodal Network

A fixed-point formulation and a simulation-based solution method were developed for modeling intermodal passenger tours in a dynamic transportation network. The model proposed in this paper is a combined model of a dynamic traffic assignment, a schedule-based transit assignment, and a park-and-ride choice model, which assigns intermodal demand (i.e., passengers with drive-to-transit mode) to the optimal park-and-ride station. The proposed model accounts for all segments of passenger tours in the passengers’ daily travel, incorporates the constraint on returning to the same park-and-ride location in a tour, and models individual passengers at a disaggregate level. The model has been applied in an integrated travel demand model in Sacramento, California, and feedback to the activity-based demand model is provided through separate time-dependent skim tables for auto, transit, and intermodal trips.

[1]  Mark Hickman,et al.  Algorithm for Intermodal Optimal Multidestination Tour with Dynamic Travel Times , 2012 .

[2]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[3]  Yi-Chang Chiu,et al.  Integrated Land Use–Transport Model System with Dynamic Time-Dependent Activity–Travel Microsimulation , 2012 .

[4]  Athanasios K. Ziliaskopoulos,et al.  An intermodal optimum path algorithm for multimodal networks with dynamic arc travel times and switching delays , 2000, Eur. J. Oper. Res..

[5]  Eric J. Miller,et al.  Integrating an Activity-Based Travel Demand Model with Dynamic Traffic Assignment and Emission Models , 2010 .

[6]  Dung-Ying Lin,et al.  Integration of Activity-Based Modeling and Dynamic Traffic Assignment , 2008 .

[7]  Ángel Marín,et al.  Network equilibrium with combined modes: models and solution algorithms , 2005 .

[8]  Mark Hickman,et al.  Trip-Based Path Algorithms Using the Transit Network Hierarchy , 2015 .

[9]  Mark Hickman,et al.  Hyperpaths in Network Based on Transit Schedules , 2012 .

[10]  Larry J. LeBlanc,et al.  Methods for Combining Modal Split and Equilibrium Assignment Models , 1979 .

[11]  Kuilin Zhang,et al.  Dynamic micro-assignment modeling approach for integrated multimodal urban corridor management , 2008 .

[12]  Khaled Abdelghany STOCHASTIC DYNAMIC TRAFFIC ASSIGNMENT FOR INTERMODAL TRANSPORTATION NETWORKS WITH CONSISTENT INFORMATION SUPPLY STRATEGIES , 2001 .

[13]  Giovanni Storchi,et al.  Shortest viable hyperpath in multimodal networks , 2002 .

[14]  Alireza Khani,et al.  Models and Solution Algorithms for Transit and Intermodal Passenger Assignment (Development of FAST-TrIPs Model) , 2013 .

[15]  Mark Hickman,et al.  Intermodal Path Algorithm for Time-Dependent Auto Network and Scheduled Transit Service , 2012 .

[16]  Mark Hickman,et al.  Integration of the FAST-TrIPs Person-Based Dynamic Transit Assignment Model, the SF-CHAMP Regional, Activity-Based Travel Demand Model, and San Francisco’s Citywide Dynamic Traffic Assignment Model , 2013 .

[17]  Anna Sciomachen,et al.  A utility measure for finding multiobjective shortest paths in urban multimodal transportation networks , 1998, Eur. J. Oper. Res..

[18]  Michael Florian,et al.  Network Equilibrium Models with Combined Modes , 1994, Transp. Sci..