Nonlinear Bifurcation Analysis of a Single-DoF Model of a Robotic Arm Subject to Digital Position Control

[1]  Jean-Pierre Barbot,et al.  Nonlinear discrete-time control of systems with a Naimark-Sacker bifurcation , 2001, Syst. Control. Lett..

[2]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[3]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[4]  Gábor Stépán,et al.  Vibrations of machines subjected to digital force control , 2001 .

[5]  J. Edward Colgate,et al.  Passivity of a class of sampled-data systems: Application to haptic interfaces , 1997 .

[6]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[7]  Gábor Stépán,et al.  Analysis of effects of differential gain on dynamic stability of digital force control , 2008 .

[8]  Gábor Stépán,et al.  Global dynamics of low immersion high-speed milling. , 2004, Chaos.

[9]  Angel Rubio,et al.  Stability analysis of a 1 DOF haptic interface using the Routh-Hurwitz criterion , 2004, IEEE Transactions on Control Systems Technology.

[10]  Dimitry Gorinevsky,et al.  Force Control of Robotics Systems , 1998 .

[11]  Dewen Hu,et al.  Stability and bifurcation analysis on a discrete-time neural network , 2005 .

[12]  Michael F. Shlesinger,et al.  Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers , 1993 .

[13]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[14]  Bruno Siciliano,et al.  Robot Force Control , 2000 .

[15]  Eyad H. Abed,et al.  Local Feedback Control of the Neimark-sacker bifurcation , 2003, Int. J. Bifurc. Chaos.

[16]  H. Troger,et al.  Nonlinear stability and bifurcation theory , 1991 .

[17]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[18]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .