Explaining LIGO's observations via isolated binary evolution with natal kicks

We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ ≃ 200 (50) km/s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models’ compatibility with LIGO’s observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  U. Toronto,et al.  Systematic challenges for future gravitational wave measurements of precessing binary black holes , 2017, 1709.03095.

[3]  K. Chatziioannou,et al.  Impact of Bayesian Priors on the Characterization of Binary Black Hole Coalescences. , 2017, Physical review letters.

[4]  Ilya Mandel,et al.  University of Birmingham Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves , 2017 .

[5]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[6]  Michael Boyle,et al.  Numerical relativity waveform surrogate model for generically precessing binary black hole mergers , 2017, 1705.07089.

[7]  E. Thrane,et al.  Determining the population properties of spinning black holes , 2017, 1704.08370.

[8]  C. Pankow,et al.  Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations , 2017, 1704.07379.

[9]  R. O’Shaughnessy,et al.  Inferences about Supernova Physics from Gravitational-Wave Measurements: GW151226 Spin Misalignment as an Indicator of Strong Black-Hole Natal Kicks. , 2017, Physical review letters.

[10]  I. Mandel,et al.  Formation of the first three gravitational-wave observations through isolated binary evolution , 2017, Nature communications.

[11]  Ilya Mandel,et al.  Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments , 2017, 1703.06873.

[12]  Scott E. Field,et al.  A Surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers , 2017, 1701.00550.

[13]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[14]  C. Pankow,et al.  ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO , 2016, 1609.05916.

[15]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[16]  Chris L. Fryer,et al.  The effect of pair-instability mass loss on black-hole mergers , 2016, 1607.03116.

[17]  V. Kalogera,et al.  DISTINGUISHING BETWEEN FORMATION CHANNELS FOR BINARY BLACK HOLES WITH LISA , 2016, 1606.09558.

[18]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[19]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[20]  Y. Wang,et al.  Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence , 2016, 1606.01262.

[21]  P. Hopkins,et al.  When and where did GW150914 form , 2016, 1605.08783.

[22]  J. Kollmeier,et al.  GW150914: spin-based constraints on the merger time of the progenitor system , 2016, 1605.03839.

[23]  E. Berti,et al.  eLISA eccentricity measurements as tracers of binary black hole formation , 2016, 1605.01341.

[24]  D. Gerosa,et al.  precession : Dynamics of spinning black-hole binaries with python , 2016, 1605.01067.

[25]  J. Silk,et al.  Metallicity-constrained merger rates of binary black holes and the stochastic gravitational wave background , 2016, 1604.04288.

[26]  C. Haster,et al.  DYNAMICAL FORMATION OF THE GW150914 BINARY BLACK HOLE , 2016, 1604.04254.

[27]  B. A. Boom,et al.  GW150914: Implications for the stochastic gravitational wave background from binary black holes , 2016 .

[28]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[29]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[30]  Robert W. Taylor,et al.  ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .

[31]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[32]  B. A. Boom,et al.  THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.

[33]  E. Stanway,et al.  BPASS predictions for binary black hole mergers , 2016, 1602.03790.

[34]  S. Privitera,et al.  Implementing a search for gravitational waves from binary black holes with nonprecessing spin , 2016 .

[35]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[36]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[37]  Richard O'Shaughnessy,et al.  COMPACT BINARY MERGER RATES: COMPARISON WITH LIGO/VIRGO UPPER LIMITS , 2015, 1510.04615.

[38]  G. Nelemans,et al.  Constraining the formation of black holes in short-period black hole low-mass X-ray binaries , 2015, 1507.08105.

[39]  R. O’Shaughnessy,et al.  Multi-timescale analysis of phase transitions in precessing black-hole binaries , 2015, 1506.03492.

[40]  Frank Ohme,et al.  DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES , 2015, 1504.07802.

[41]  Philip Graff,et al.  Use of gravitational waves to probe the formation channels of compact binaries , 2015, 1503.04307.

[42]  R. O’Shaughnessy,et al.  Effective potentials and morphological transitions for binary black hole spin precession. , 2014, Physical review letters.

[43]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[44]  Chris L. Fryer,et al.  DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES , 2014, 1405.7016.

[45]  R. O’Shaughnessy,et al.  Distinguishing black-hole spin-orbit resonances by their gravitational-wave signatures , 2014, 1507.05587.

[46]  Michael Boyle,et al.  Effective-one-body model for black-hole binaries with generic mass ratios and spins , 2013, Physical Review D.

[47]  Frank Ohme,et al.  Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.

[48]  R. O’Shaughnessy Data-driven methods to explore a large space of computationally costly compact binary progenitor models , 2013 .

[49]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES , 2013, 1308.1546.

[50]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[51]  Richard O'Shaughnessy,et al.  Resonant-plane locking and spin alignment in stellar-mass black-hole binaries: A diagnostic of compact-binary formation , 2013, 1302.4442.

[52]  G. Torres,et al.  THE BANANA PROJECT. IV. TWO ALIGNED STELLAR ROTATION AXES IN THE YOUNG ECCENTRIC BINARY SYSTEM EP CRUCIS: PRIMORDIAL ORIENTATION AND TIDAL ALIGNMENT , 2012, 1211.7065.

[53]  E. Ochsner,et al.  Gravitational waves from black hole-neutron star binaries: Effective Fisher matrices and parameter estimation using higher harmonics , 2012, 1209.4494.

[54]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[55]  M. Davies,et al.  Investigating stellar‐mass black hole kicks , 2012, 1203.3077.

[56]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[57]  V. Kalogera,et al.  UNDERSTANDING COMPACT OBJECT FORMATION AND NATAL KICKS. III. THE CASE OF CYGNUS X-1 , 2011, 1107.5585.

[58]  D. Holz,et al.  COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.

[59]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[60]  Adam D. Myers,et al.  INFERRING THE ECCENTRICITY DISTRIBUTION , 2010, 1008.4146.

[61]  C. Tout,et al.  Supernova kicks and misaligned microquasars , 2009, 0910.0018.

[62]  Los Alamos National Laboratory,et al.  BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES , 2009, 0908.3635.

[63]  Richard O'Shaughnessy,et al.  Compact binary coalescences in the band of ground-based gravitational-wave detectors , 2009, 0912.1074.

[64]  É. Racine Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction , 2008, 0803.1820.

[65]  T. Mazeh Observational Evidence for Tidal Interaction in Close Binary Systems , 2007, 0801.0134.

[66]  N. University,et al.  Short Gamma-Ray Bursts and Binary Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts , 2007, 0706.4139.

[67]  M. V. van der Sluys,et al.  Black Hole Spin Evolution: Implications for Short-Hard Gamma-Ray Bursts and Gravitational Wave Detection , 2007, astro-ph/0703131.

[68]  N. University,et al.  Constraining Population Synthesis Models via Empirical Binary Compact Object Merger and Supernova Rates , 2006, astro-ph/0610076.

[69]  A. Zezas,et al.  Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.

[70]  T. Bulik,et al.  On the Rarity of Double Black Hole Binaries: Consequences for Gravitational Wave Detection , 2006, astro-ph/0612032.

[71]  D. Lorimer,et al.  A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.

[72]  N. University,et al.  Constraining Population Synthesis Models via the Binary Neutron Star Population , 2005, astro-ph/0504479.

[73]  R. O’Shaughnessy,et al.  Bounds on Expected Black Hole Spins in Inspiraling Binaries , 2005, astro-ph/0503219.

[74]  Joshua G. Hale,et al.  Journal of the Royal Statistical Society Notes on the Submission of Papers , 2005 .

[75]  T. Loredo Accounting for Source Uncertainties in Analyses of Astronomical Survey Data , 2004, astro-ph/0409387.

[76]  T. Tauris,et al.  Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO , 2003, astro-ph/0303227.

[77]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[78]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[79]  Charles D. Bailyn,et al.  A Black Hole in the Superluminal Source SAX J1819.3–2525 (V4641 Sgr) , 2000, astro-ph/0103045.

[80]  H. Bethe,et al.  A theory of gamma-ray bursts , 2000, astro-ph/0003361.

[81]  V. Kalogera Submitted to The Astrophysical Journal. Spin–Orbit Misalignment in Close Binaries with Two Compact Objects , 1999 .

[82]  A. King,et al.  The evolution of black hole mass and angular momentum , 1999, astro-ph/9901296.

[83]  T. Bulik,et al.  The effect of supernova natal kicks on compact object merger rate , 1999, astro-ph/9901193.

[84]  P. Natarajan,et al.  The Alignment of Disk and Black Hole Spins in Active Galactic Nuclei , 1998, astro-ph/9808187.

[85]  V. M. Lipunov,et al.  Formation and coalescence of relativistic binary stars: the effect of kick velocity , 1997, astro-ph/9702060.

[86]  J. Orosz,et al.  Optical Observations of GRO J1655–40 in Quiescence. I. A Precise Mass for the Black Hole Primary , 1996, astro-ph/9610211.

[87]  R. M. Hjellming,et al.  Episodic ejection of relativistic jets by the X-ray transient GRO J1655 - 40 , 1995, Nature.

[88]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[89]  A. Tutukov,et al.  The merger rate of neutron star and black hole binaries , 1993 .

[90]  Piet Hut,et al.  Tidal evolution in close binary systems , 1981 .

[91]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[92]  J. Bardeen,et al.  Kerr Metric Black Holes , 1970, Nature.