A Lower Bound for the Gradient of ∞-Harmonic Functions
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] Karen K. Uhlenbeck. Regularity for a class of non-linear elliptic systems , 1977 .
[3] John L. Lewis. Capacitary functions in convex rings , 1977 .
[4] The Harnack Inequality for ∞-Harmonic Functions , 1995 .
[5] G. Alessandrini. Isoperimetric inequalities for the length of level lines of solutions of quasilinear capacity problems in the plane , 1989 .
[6] G. Aronsson. Extension of functions satisfying lipschitz conditions , 1967 .
[7] O. A. Ladyzhenskai︠a︡,et al. Linear and quasilinear elliptic equations , 1968 .
[8] Lawrence C. Evans. Estimates for smooth absolutely minimizing Lipschitz extensions. , 1993 .
[9] R. Jensen. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .
[10] A. W. J. Stoddart,et al. The shape of level surfaces of harmonic functions in three dimensions. , 1964 .