RETRIAL QUEUES WITH A FINITE NUMBER OF SOURCES
暂无分享,去创建一个
In the theory of retrial queues it is usually assumed that the flow of primary customers is Poisson. This means that the number of independent sources, or potential customers, is infinite and each of them generates primary arrivals very seldom. We consider now retrial queueing systems with a homogeneous population, that is, we assume that a finite number K of identical sources generates the so called quasi-random input. We present a survey of the main results and mathematical tools for finite source retrial queues, concentrating on M/G/1//K and M/M/c//K systems with repeated attempts.