Crystal Structure, Infrared Spectrum and Elastic Anomalies in Tuperssuatsiaite

[1]  F. Colmenero,et al.  Extreme negative mechanical phenomena in the zinc and cadmium anhydrous metal oxalates and lead oxalate dihydrate , 2020, Journal of Materials Science.

[2]  Carl J. Thaemlitz,et al.  3D Printed Tubulanes as Lightweight Hypervelocity Impact Resistant Structures. , 2019, Small.

[3]  François-Xavier Coudert,et al.  Systematic exploration of the mechanical properties of 13 621 inorganic compounds† †Electronic supplementary information (ESI) available: Extra figures on the distribution of elastic moduli, list of materials with negative Poisson's ratio and negative linear compressibility. See DOI: 10.1039/c9sc016 , 2019, Chemical science.

[4]  F. Colmenero Negative area compressibility in oxalic acid dihydrate , 2019, Materials Letters.

[5]  J. Sejkora,et al.  Crystal structure, hydrogen bonding, mechanical properties and Raman spectrum of the lead uranyl silicate monohydrate mineral kasolite , 2019, RSC advances.

[6]  R. Escribano,et al.  Thermodynamic, Raman Spectroscopic, and UV-Visible Optical Characterization of the Deltic, Squaric, and Croconic Cyclic Oxocarbon Acids. , 2019, The journal of physical chemistry. A.

[7]  F. Colmenero Silver Oxalate: Mechanical Properties and Extreme Negative Mechanical Phenomena , 2019, Advanced Theory and Simulations.

[8]  D. Galvão,et al.  On the mechanical properties of protomene: A theoretical investigation , 2019, Computational Materials Science.

[9]  Wenrui Wang,et al.  The Temperature-Sensitive Anisotropic Negative Poisson’s Ratio of Carbon Honeycomb , 2019, Nanomaterials.

[10]  F. Colmenero,et al.  Negative linear compressibility in uranyl squarate monohydrate , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  F. Colmenero Mechanical properties of anhydrous oxalic acid and oxalic acid dihydrate. , 2019, Physical chemistry chemical physics : PCCP.

[12]  F. Colmenero Anomalous mechanical behavior of the deltic, squaric and croconic cyclic oxocarbon acids , 2019, Materials Research Express.

[13]  Joseph N. Grima,et al.  On the Compressibility Properties of the Wine‐Rack‐Like Carbon Allotropes and Related Poly(phenylacetylene) Systems , 2018, physica status solidi (b).

[14]  P. Lu,et al.  Negative area compressibility of a hydrogen-bonded two-dimensional material† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc03291b , 2018, Chemical science.

[15]  Claudia Lehmann Theoretical investigation , 2018, Exploring Service Productivity.

[16]  A. Fernández,et al.  Becquerelite mineral phase: crystal structure and thermodynamic and mechanical stability by using periodic DFT , 2018, RSC advances.

[17]  M. Wegener,et al.  Three-dimensional poroelastic metamaterials with extremely negative or positive effective static volume compressibility , 2018, Extreme Mechanics Letters.

[18]  Ruben Gatt,et al.  Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson's ratio , 2018 .

[19]  D. Galvão,et al.  On the mechanical properties of novamene: A fully atomistic molecular dynamics and DFT investigation , 2018, Carbon.

[20]  F. Colmenero,et al.  Periodic Density Functional Theory Study of the Structure, Raman Spectrum, and Mechanical Properties of Schoepite Mineral. , 2018, Inorganic chemistry.

[21]  Jianhu Shen,et al.  Designing composites with negative linear compressibility , 2017 .

[22]  François-Xavier Coudert,et al.  Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning , 2017 .

[23]  Roderic S. Lakes,et al.  Negative-Poisson's-Ratio Materials: Auxetic Solids , 2017 .

[24]  D. L. Barnes Negative Linear Compressibility: Beyond the Wine-Rack model and Towards Engineering Applications , 2017 .

[25]  E. Buck,et al.  On the mechanical stability of uranyl peroxide hydrates: Implications for nuclear fuel degradation , 2015 .

[26]  L. Barbour,et al.  Giant Negative Area Compressibility Tunable in a Soft Porous Framework Material. , 2015, Journal of the American Chemical Society.

[27]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[28]  Ruben Gatt,et al.  Hierarchical Auxetic Mechanical Metamaterials , 2015, Scientific Reports.

[29]  A. Goodwin,et al.  Negative linear compressibility. , 2015, Physical chemistry chemical physics : PCCP.

[30]  Franccois-Xavier Coudert,et al.  Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems , 2014, 1410.0065.

[31]  Andrzej Katrusiak,et al.  Giant negative linear compression positively coupled to massive thermal expansion in a metal–organic framework , 2014, Nature Communications.

[32]  Y. Lee,et al.  Zeolites at high pressure: A review , 2014, Mineralogical Magazine.

[33]  Johannes T. B. Overvelde,et al.  Relating pore shape to the non-linear response of periodic elastomeric structures , 2014 .

[34]  M. Cliffe,et al.  Negative area compressibility in silver(I) tricyanomethanide. , 2013, Chemical communications.

[35]  François-Xavier Coudert,et al.  Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. , 2013, Physical chemistry chemical physics : PCCP.

[36]  Ruben Gatt,et al.  Smart metamaterials with tunable auxetic and other properties , 2013 .

[37]  Joseph N. Grima,et al.  Smart hexagonal truss systems exhibiting negative compressibility through constrained angle stretching , 2013, Smart Materials and Structures.

[38]  Lars Peters,et al.  Giant negative linear compressibility in zinc dicyanoaurate. , 2013, Nature materials.

[39]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[40]  N. Fenineche,et al.  Structural and elastic properties of LiBH4 for hydrogen storage applications , 2012 .

[41]  Joseph N. Grima,et al.  Mechanical metamaterials: Materials that push back. , 2012, Nature materials.

[42]  Matthew G. Tucker,et al.  Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn[Ag(CN)2]3. , 2012, Journal of the American Chemical Society.

[43]  H. Niu,et al.  Electronic, optical, and mechanical properties of superhard cold-compressed phases of carbon , 2011 .

[44]  Kenneth E. Evans,et al.  ElAM: A computer program for the analysis and representation of anisotropic elastic properties , 2010, Comput. Phys. Commun..

[45]  Zoe A. D. Lethbridge,et al.  Elastic anisotropy and extreme Poisson's ratios in single crystals , 2010 .

[46]  M. Y. Seyidov,et al.  Negative thermal expansion due to negative area compressibility in TlGaSe2 semiconductor with layered crystalline structure , 2010 .

[47]  Fabrizio Scarpa,et al.  Smart tetrachiral and hexachiral honeycomb: Sensing and impact detection , 2010 .

[48]  Rong Yu,et al.  Calculations of single-crystal elastic constants made simple , 2010, Comput. Phys. Commun..

[49]  Luzhuo Chen,et al.  Auxetic materials with large negative Poisson's ratios based on highly oriented carbon nanotube structures , 2009 .

[50]  Y. Gartstein,et al.  Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles , 2009, Science.

[51]  M. Kozlov,et al.  Modeling the auxetic transition for carbon nanotube sheets , 2008, 0903.2892.

[52]  Martin Ostoja-Starzewski,et al.  Universal elastic anisotropy index. , 2008, Physical review letters.

[53]  Zoe A. D. Lethbridge,et al.  Negative Poisson's ratios in siliceous zeolite MFI-silicalite. , 2008, The Journal of chemical physics.

[54]  Mei Zhang,et al.  Sign Change of Poisson's Ratio for Carbon Nanotube Sheets , 2008, Science.

[55]  Kon-Well Wang,et al.  Design of Microstructures and Structures with Negative Linear Compressibility in Certain Directions , 2008 .

[56]  R. Lakes,et al.  Negative compressibility, negative Poisson's ratio, and stability , 2008 .

[57]  Yongjae Lee,et al.  Anisotropic elastic behaviour and structural evolution of zeolite phillipsite at high pressure: A synchrotron powder diffraction study , 2007 .

[58]  Joseph N. Grima,et al.  Natrolite: A zeolite with negative Poisson’s ratios , 2007 .

[59]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[60]  S. Clark,et al.  Variational density-functional perturbation theory for dielectrics and lattice dynamics. , 2006 .

[61]  Kenneth E. Evans,et al.  Brillouin scattering study on the single-crystal elastic properties of natrolite and analcime zeolites , 2005 .

[62]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[63]  Larry R. Dalton,et al.  Pneumatic carbon nanotube actuators , 2002 .

[64]  P. Buseck,et al.  The structure of Mn-rich tuperssuatsiaite: A palygorskite-related mineral , 2002 .

[65]  G. Artioli,et al.  Pressure-induced volume expansion of zeolites in the natrolite family. , 2002, Journal of the American Chemical Society.

[66]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[67]  Joseph N. Grima,et al.  Do Zeolites Have Negative Poisson's Ratios? , 2000 .

[68]  K. Evans,et al.  Auxetic Materials : Functional Materials and Structures from Lateral Thinking! , 2000 .

[69]  K. Syassen,et al.  Vibrational properties of NaV2O5 under high pressure studied by Raman spectroscopy , 1999 .

[70]  Baughman,et al.  Materials with negative compressibilities in one or more dimensions , 1998, Science.

[71]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .

[72]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[73]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[74]  N. Güven,et al.  The Coordination of Aluminum Ions in the Palygorskite Structure , 1992 .

[75]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[76]  E. Galán,et al.  Chapter 16. SEPIOLITE AND PALYGORSKITE , 1988 .

[77]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[78]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .

[79]  J. L. Ahlrichs,et al.  Hydroxyl groups and water in palygorskite , 1977 .

[80]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[81]  R. C. Macridis A review , 1963 .

[82]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[83]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[84]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[85]  R. Fürth,et al.  The Stability of Crystal Lattices , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[86]  Rama Dhar Misra,et al.  On the stability of crystal lattices. I , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[87]  F. Aymerich,et al.  Variable Poisson’s ratio materials for globally stable static and dynamic compression resistance , 2019, Extreme Mechanics Letters.

[88]  R. Baughman,et al.  Architectured materials: Straining to expand entanglements. , 2016, Nature materials.

[89]  R. Angel Equations of State , 2000 .

[90]  E. Galán,et al.  Sepiolite and palygorskite , 1988 .

[91]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .