Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants

[1]  Qihui Wang,et al.  Molecular Basis of Mink ACE2 Binding to SARS-CoV-2 and Its Mink-Derived Variants , 2022, Journal of virology.

[2]  Hao Song,et al.  Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape , 2022, Nature Communications.

[3]  E. Callaway Will ‘Centaurus’ be the next global coronavirus variant? Indian cases offers clues , 2022, Nature.

[4]  R. Ke,et al.  Multi‐species outbreak of SARS‐CoV‐2 Delta variant in a zoological institution, with the detection in two new families of carnivores , 2022, Transboundary and emerging diseases.

[5]  G. Gao,et al.  Broader-species receptor binding and structural bases of Omicron SARS-CoV-2 to both mouse and palm-civet ACE2s , 2022, Cell discovery.

[6]  Qihui Wang,et al.  Structural basis of SARS-CoV-2 and its variants binding to intermediate horseshoe bat ACE2 , 2022, International journal of biological sciences.

[7]  Qian Wang,et al.  Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 , 2022, Nature.

[8]  S. Cui,et al.  An Updated Review on SARS-CoV-2 Infection in Animals , 2022, Viruses.

[9]  G. Gao,et al.  Cross-species recognition and molecular basis of SARS-CoV-2 and SARS-CoV binding to ACE2s of marine animals , 2022, National science review.

[10]  Qihui Wang,et al.  Binding and structural basis of equine ACE2 to RBDs from SARS-CoV, SARS-CoV-2 and related coronaviruses , 2022, Nature Communications.

[11]  Fei Shao,et al.  BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection , 2022, Nature.

[12]  Liang Wang,et al.  Structural basis of human ACE2 higher binding affinity to currently circulating Omicron SARS-CoV-2 sub-variants BA.2 and BA.1.1 , 2022, Cell.

[13]  H. Xu,et al.  Structural and biochemical mechanism for increased infectivity and immune evasion of Omicron BA.2 variant compared to BA.1 and their possible mouse origins , 2022, Cell Research.

[14]  Chao Zhang,et al.  Molecular basis of receptor binding and antibody neutralization of Omicron , 2022, Nature.

[15]  D. Lung,et al.  Co-circulation of two SARS-CoV-2 variant strains within imported pet hamsters in Hong Kong , 2022, Emerging microbes & infections.

[16]  Hualiang Jiang,et al.  Structures of the Omicron Spike trimer with ACE2 and an anti-Omicron antibody , 2022, Science.

[17]  H. El‐Seedi,et al.  Diversity of Coronaviruses with Particular Attention to the Interspecies Transmission of SARS-CoV-2 , 2022, Animals : an open access journal from MDPI.

[18]  Larissa B. Thackray,et al.  SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters , 2022, Nature.

[19]  S. Subramaniam,et al.  SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein–ACE2 complex , 2022, Science.

[20]  Nan Wang,et al.  Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron , 2022, Cell.

[21]  G. Gao,et al.  Omicron variant of SARS-CoV-2 imposes a new challenge for the global public health , 2022, Biosafety and Health.

[22]  G. Gao,et al.  Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2 , 2022, Cell.

[23]  A. Walls,et al.  Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement , 2021, bioRxiv.

[24]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[25]  M. Kraemer,et al.  Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa , 2021, Nature.

[26]  G. Gao,et al.  The emergence, genomic diversity and global spread of SARS-CoV-2 , 2021, Nature.

[27]  Wenfeng Qian,et al.  Evidence for a mouse origin of the SARS-CoV-2 Omicron variant , 2021, bioRxiv.

[28]  J. Liu,et al.  Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route , 2021, Signal Transduction and Targeted Therapy.

[29]  G. Gao,et al.  Molecular insights into receptor binding of recent emerging SARS-CoV-2 variants , 2021, Nature Communications.

[30]  Liang Wang,et al.  COVID-19 Expands Its Territories from Humans to Animals , 2021, China CDC weekly.

[31]  M. Linial,et al.  The Rise and Fall of a Local SARS-CoV-2 Variant with the Spike Protein Mutation L452R , 2021, Vaccines.

[32]  J. Carazo,et al.  DeepEMhancer: a deep learning solution for cryo-EM volume post-processing , 2021, Communications Biology.

[33]  G. Gao,et al.  The molecular basis for SARS-CoV-2 binding to dog ACE2 , 2021, Nature Communications.

[34]  J. Zahradník,et al.  SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity , 2021, Cell Host & Microbe.

[35]  William T. Harvey,et al.  SARS-CoV-2 variants, spike mutations and immune escape , 2021, Nature Reviews Microbiology.

[36]  G. Gao,et al.  Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species , 2021, Cell.

[37]  Huanchun Chen,et al.  Q493K and Q498H substitutions in Spike promote adaptation of SARS-CoV-2 in mice , 2021, EBioMedicine.

[38]  G. Gao,et al.  Viral targets for vaccines against COVID-19 , 2020, Nature reviews. Immunology.

[39]  G. Gao,et al.  Cross-species recognition of SARS-CoV-2 to bat ACE2 , 2020, Proceedings of the National Academy of Sciences.

[40]  G. Gao,et al.  Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2 , 2020, Cell discovery.

[41]  M. Beltramello,et al.  Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms , 2020, Science.

[42]  Lisa E. Gralinski,et al.  Animal models for COVID-19 , 2020, Nature.

[43]  Peter B Rosenthal,et al.  Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion , 2020, Nature.

[44]  Z. Bu,et al.  Mouse-adapted SARS-CoV-2 replicates efficiently in the upper and lower respiratory tract of BALB/c and C57BL/6J mice , 2020, Protein & Cell.

[45]  William J. Liu,et al.  A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 , 2020, Nature.

[46]  X. Xie,et al.  Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells , 2020, Cell.

[47]  J. Nie,et al.  Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay , 2020, Nature Protocols.

[48]  F. Gao,et al.  A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 , 2020, Science.

[49]  Yusuke Nakamura,et al.  Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2 , 2020, Journal of Human Genetics.

[50]  K. Yuen,et al.  Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 , 2020, Cell.

[51]  Young-Jun Park,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[52]  G. Gao,et al.  A Novel Coronavirus Genome Identified in a Cluster of Pneumonia Cases — Wuhan, China 2019−2020 , 2020, China CDC weekly.

[53]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[54]  Yi Shi,et al.  Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains , 2017, Nature Communications.

[55]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[56]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[57]  A. Clavijo,et al.  Improvement and Optimization of a Multiplex Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Detection and Typing of Vesicular Stomatitis Virus , 2010, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.

[58]  D. Kranz,et al.  T‐cell receptor binding affinities and kinetics: impact on T‐cell activity and specificity , 2009, Immunology.

[59]  Andrew K. Sewell,et al.  Human TCR-Binding Affinity is Governed by MHC Class Restriction1 , 2007, The Journal of Immunology.

[60]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[61]  Peng Wang,et al.  Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution , 2022, bioRxiv.

[62]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.