Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe

We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best rms timing residuals in this set are ∼30–50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our data set to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of hc(1 yr−1) < 7 × 10−15 (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909−3744.

[1]  S. Burke-Spolaor,et al.  The High Time Resolution Universe Pulsar Survey –VIII. The Galactic millisecond pulsar population , 2013, 1306.4190.

[2]  X. Siemens,et al.  AN EFFICIENT APPROXIMATION TO THE LIKELIHOOD FOR GRAVITATIONAL WAVE STOCHASTIC BACKGROUND DETECTION USING PULSAR TIMING DATA , 2013, 1302.1903.

[3]  Kevin Stovall,et al.  THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY II: DATA ANALYSIS AND THE TIMING OF 10 NEW PULSARS, INCLUDING A RELATIVISTIC BINARY , 2012, 1209.4296.

[4]  R. Lynch,et al.  THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY. I. SURVEY OBSERVATIONS AND THE DISCOVERY OF 13 PULSARS , 2012, 1209.4293.

[5]  J. Ayers,et al.  THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS , 2012, 1209.4108.

[6]  Eric Perlmutter,et al.  Black holes in three dimensional higher spin gravity: a review , 2012, 1208.5182.

[7]  M. Mclaughlin The North American Nanohertz Observatory for Gravitational Waves , 2013 .

[8]  J. Cordes,et al.  PULSE INTENSITY MODULATION AND THE TIMING STABILITY OF MILLISECOND PULSARS: A CASE STUDY OF PSR J1713+0747 , 2012, 1210.7021.

[9]  G. Desvignes,et al.  FOUR HIGHLY DISPERSED MILLISECOND PULSARS DISCOVERED IN THE ARECIBO PALFA GALACTIC PLANE SURVEY , 2012, 1208.1273.

[10]  G. Desvignes,et al.  TWO MILLISECOND PULSARS DISCOVERED BY THE PALFA SURVEY AND A SHAPIRO DELAY MEASUREMENT , 2012, 1208.1228.

[11]  J. Cordes,et al.  DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING , 2012 .

[12]  X. Siemens,et al.  OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS , 2012, 1204.4218.

[13]  F. A. Jenet,et al.  PRACTICAL METHODS FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION USING PULSAR TIMING DATA , 2012, 1202.0808.

[14]  J. Cordes,et al.  MINIMUM REQUIREMENTS FOR DETECTING A STOCHASTIC GRAVITATIONAL WAVE BACKGROUND USING PULSARS , 2011, 1106.4047.

[15]  S. Ransom,et al.  HIGH-PRECISION TIMING OF FIVE MILLISECOND PULSARS: SPACE VELOCITIES, BINARY EVOLUTION, AND EQUIVALENCE PRINCIPLES , 2011, 1109.5638.

[16]  G. Hobbs,et al.  High signal‐to‐noise ratio observations and the ultimate limits of precision pulsar timing , 2011, 1108.0812.

[17]  R. N. Manchester,et al.  Pulsar timing analysis in the presence of correlated noise , 2011, 1107.5366.

[18]  P. Demorest Cyclic spectral analysis of radio pulsars , 2011, 1106.3345.

[19]  G. Desvignes,et al.  Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data , 2011, 1103.0576.

[20]  On detection of the stochastic gravitational-wave background using the Parkes pulsar timing array , 2011, 1102.2230.

[21]  K. Olum,et al.  Large parallel cosmic string simulations: New results on loop production , 2011, 1101.5173.

[22]  L. F. Ziebell,et al.  NONLINEAR EVOLUTION OF BEAM–PLASMA INSTABILITY IN INHOMOGENEOUS MEDIUM , 2011 .

[23]  D. Thompson,et al.  THREE MILLISECOND PULSARS IN FERMI LAT UNASSOCIATED BRIGHT SOURCES , 2010, 1012.2862.

[24]  J. Cordes,et al.  ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS , 2010, 1010.4794.

[25]  J. Taylor,et al.  TIMING MEASUREMENTS OF THE RELATIVISTIC BINARY PULSAR PSR B1913+16 , 2010, 1011.0718.

[26]  A. Lyne,et al.  Switched Magnetospheric Regulation of Pulsar Spin-Down , 2010, Science.

[27]  B. J. Rickett,et al.  SCATTERING OF PULSAR RADIO EMISSION BY THE INTERSTELLAR PLASMA , 2010, 1005.4914.

[28]  L. Finn,et al.  DETECTION, LOCALIZATION, AND CHARACTERIZATION OF GRAVITATIONAL WAVE BURSTS IN A PULSAR TIMING ARRAY , 2010, 1004.3499.

[29]  F. Jenet,et al.  tempo2: a new pulsar timing package – III. Gravitational wave simulation , 2009, 0901.0592.

[30]  A. Vecchio,et al.  Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.

[31]  Y. Levin,et al.  On measuring the gravitational-wave background using Pulsar Timing Arrays , 2008, 0809.0791.

[32]  L. Price,et al.  Optimal strategies for gravitational wave stochastic background searches in pulsar timing data , 2008, 0809.0701.

[33]  A. Vecchio,et al.  The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.

[34]  V. Mandic,et al.  Gravitational-wave stochastic background from cosmic strings. , 2006, Physical review letters.

[35]  R. N. Manchester,et al.  Tests of General Relativity from Timing the Double Pulsar , 2006, Science.

[36]  F. Jenet,et al.  Upper Bounds on the Low-Frequency Stochastic Gravitational Wave Background from Pulsar Timing Observations: Current Limits and Future Prospects , 2006, astro-ph/0609013.

[37]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[38]  I. Cognard,et al.  Interstellar Plasma Weather Effects in Long-Term Multifrequency Timing of Pulsar B1937+21 , 2006, astro-ph/0601242.

[39]  W. V. Straten,et al.  Radio astronomical polarimetry and high-precision pulsar timing , 2005, astro-ph/0510334.

[40]  S. Ord,et al.  PSR J0737-3039A: baseband timing and polarimetry , 2005 .

[41]  F. Jenet,et al.  Detecting the Stochastic Gravitational Wave Background Using Pulsar Timing , 2005, astro-ph/0504458.

[42]  R. Manchester,et al.  psrchive and psrfits: An Open Approach to Radio Pulsar Data Storage and Analysis , 2004, Publications of the Astronomical Society of Australia.

[43]  W. Straten Radio Astronomical Polarimetry and Point-Source Calibration , 2004, astro-ph/0401536.

[44]  L. Wen,et al.  Constraining the Properties of the Proposed Super-Massive Black Hole System in 3C66B: Limits from Pulsar Timing , 2003, astro-ph/0310276.

[45]  A. Jaffe,et al.  Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries , 2002, astro-ph/0210148.

[46]  Athanasios Papoulis,et al.  Probability, random variables, and stochastic processes , 2002 .

[47]  William H. Press,et al.  Numerical recipes in C , 2002 .

[48]  D. Nice,et al.  New Limits on the Gravitational Wave Background and Other Results from the Pulsar Timing Array , 2001 .

[49]  Phil Perillat,et al.  Mueller Matrix Parameters for Radio Telescopes and Their Observational Determination , 2001, astro-ph/0107352.

[50]  Peter Sollich,et al.  AIP CONF PROC , 2001 .

[51]  D. Merritt,et al.  The M•-σ Relation for Supermassive Black Holes , 2000, astro-ph/0008310.

[52]  T. Damour,et al.  Gravitational wave bursts from cosmic strings , 2000, Physical review letters.

[53]  D. Lorimer,et al.  The Characteristics of Millisecond Pulsar Emission. III. From Low to High Frequencies , 1999, astro-ph/9906442.

[54]  J. Cordes,et al.  Diffractive Interstellar Scintillation Timescales and Velocities , 1998 .

[55]  V. Kaspi,et al.  High - precision timing of millisecond pulsars. 3: Long - term monitoring of PSRs B1855+09 and B1937+21 , 1994 .

[56]  J. H. Taylor,et al.  Pulsar timing and relativistic gravity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[57]  D. Backer,et al.  Constructing a Pulsar Timing Array , 1990 .

[58]  B. J. Rickett,et al.  Radio propagation through the turbulent interstellar plasma. , 1990 .

[59]  J. Weisberg,et al.  Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16 , 1989 .

[60]  R. Blandford,et al.  Arrival-time analysis for a millisecond pulsar , 1984 .

[61]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[62]  S. Kulkarni,et al.  A millisecond pulsar , 1982, Nature.

[63]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[64]  J. H. Taylor,et al.  A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16 , 1982 .

[65]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[66]  Sidney Fernbach,et al.  Methods in computational physics. Volume 14 - Radio astronomy , 1975 .

[67]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .