Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features

The reduction in switchable polarization of ferroelectric thin films due to electrical stress (polarization fatigue) is a major problem in ferroelectric nonvolatile memories. There is a large body of available experimental data and a number of existing models which address this issue, however the origin of this phenomena is still not properly understood. This work synthesizes the current experimental data, models, and approaches in order to draw conclusions on the relative importance of different macro- and microscopic scenarios of fatigue. Special attention is paid to the role of oxygen vacancy migration and electron injection into the film and it is concluded that the latter plays the predominant role. Experiments and problems for theoretical investigations, which can contribute to the further elucidation of polarization fatigue mechanisms in ferroelectric thin films, are suggested.

[1]  R. Landauer Electrostatic Considerations in BaTiO3 Domain Formation during Polarization Reversal , 1957 .

[2]  G. W. Beeler,et al.  Reconstruction of the action potential of ventricular myocardial fibres , 1977, The Journal of physiology.

[3]  Kurt Binder,et al.  Surface effects on phase transitions in ferroelectrics and dipolar magnets , 1979 .

[4]  P D Wolf,et al.  The potential gradient field created by epicardial defibrillation electrodes in dogs. , 1986, Circulation.

[5]  F A Roberge,et al.  Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. , 1987, Computers and biomedical research, an international journal.

[6]  P. Wolf,et al.  Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. , 1989, The Journal of clinical investigation.

[7]  P. V. Dressendorfer,et al.  Device modeling of ferroelectric capacitors , 1990 .

[8]  D. J. Johnson,et al.  Measuring Fatigue in PZT Thin Films , 1990 .

[9]  P. Hunter,et al.  Mathematical model of geometry and fibrous structure of the heart. , 1991, The American journal of physiology.

[10]  R. Zuleeg,et al.  Quantitative measurement of space-charge effects in lead zirconate-titanate memories , 1991 .

[11]  R. Waser Bulk Conductivity and Defect Chemistry of Acceptor‐Doped Strontium Titanate in the Quenched State , 1991 .

[12]  M. Sayer,et al.  The influence of niobium-doping on lead zirconate titanate ferroelectric thin films , 1991 .

[13]  J. Tarascon,et al.  Fatigue and aging in ferroelectric PbZr0.2Ti0.8O3/YBa2Cu3O7 heterostructures , 1992 .

[14]  S. Desu,et al.  Mechanism of Fatigue in Ferroelectric Thin Films , 1992 .

[15]  C. Brennan A physical model for the electrical hysteresis of thin-film ferroelectric capacitors , 1992 .

[16]  Statistical theory of fatigue in ferroelectric devices , 1992 .

[17]  Effects of post‐deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate titanate (65/35) thin film capacitors , 1992 .

[18]  N. Raman,et al.  Sol-Gel processing of Nb-doped Pb(Zr, Ti)O3 thin films for ferroelectric memory applications , 1992 .

[19]  C. Brennan Model of ferroelectric fatigue due to defect/domain interactions , 1993 .

[20]  W. Krassowska,et al.  Homogenization of syncytial tissues. , 1993, Critical reviews in biomedical engineering.

[21]  R. Tustison,et al.  Fatigue of ferroelectric PbZr_xTi_yO_3 capacitors with Ru and RuO_x electrodes , 1993 .

[22]  C. Henriquez Simulating the electrical behavior of cardiac tissue using the bidomain model. , 1993, Critical reviews in biomedical engineering.

[23]  C. Brennan,et al.  Temperature dependent fatigue rates in thin-film ferroelectric capacitors , 1994 .

[24]  Hidemi Takasu,et al.  Preparation of Pb(Zr,Ti)O3 Thin Films on Ir and IrO2 Electrodes , 1994 .

[25]  T. Mihara,et al.  Polarization Fatigue Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin-Film Capacitors , 1994 .

[26]  P. J. van Veldhoven,et al.  Ferroelectric properties and fatigue of PbZr0.51Ti0.49O3 thin films of varying thickness: Blocking layer model , 1994 .

[27]  A. Tagantsev,et al.  Built-in electric field assisted nucleation and coercive fields in ferroelectric thin films , 1994 .

[28]  R E Ideker,et al.  Virtual electrode effects in myocardial fibers. , 1994, Biophysical journal.

[29]  Husam N. Alshareef,et al.  Contribution of electrodes and microstructures to the electrical properties of Pb(Zr_0.53Ti_0.47)O_3 thin film capacitors , 1994 .

[30]  R. A. Moore,et al.  Effects of operating conditions on the fast‐decay component of the retained polarization in lead zirconate titanate thin films , 1994 .

[31]  R. W. Schwartz,et al.  Polarization suppression in Pb(Zr,Ti)O3 thin films , 1995 .

[32]  A. Tagantsev,et al.  Fatigue, Rejuvenation and Self-Restoring in Ferroelectric Thin-Films , 1995 .

[33]  A. Tagantsev,et al.  Depletion and depolarizing effects in ferroelectric thin films and their manifestations in switching and fatigue , 1995 .

[34]  D. Lichtenwalner,et al.  A review of composition-structure-property relationships for PZT-based heterostructure capacitors , 1995 .

[35]  DC-voltage and cycling induced recovery of switched polarisation in fatigued ferroelectric thin films , 1995 .

[36]  W. Krassowska Effects of Electroporation on Transmembrane Potential Induced by Defibrillation Shocks , 1995, Pacing and clinical electrophysiology : PACE.

[37]  J. Wikswo,et al.  Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. , 1995, Biophysical journal.

[38]  O. Tovar,et al.  Threshold reduction with biphasic defibrillator waveforms. Role of charge balance. , 1995, Journal of electrocardiology.

[39]  K. Khachaturyan MECHANICAL FATIGUE IN THIN FILMS INDUCED BY PIEZOELECTRIC STRAINS AS A CAUSE OF FERROELECTRIC FATIGUE , 1995 .

[40]  A. Kingon,et al.  Electrical properties of ferroelectric thin‐film capacitors with hybrid (Pt,RuO2) electrodes for nonvolatile memory applications , 1995 .

[41]  J. J. Lee,et al.  Electrode contacts on ferroelectric Pb(ZrxTi1−x)O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties , 1995 .

[42]  P. Hunter,et al.  Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. , 1995, The American journal of physiology.

[43]  B.J. Roth,et al.  A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode , 1995, IEEE Transactions on Biomedical Engineering.

[44]  A. Tagantsev,et al.  Identification of Passive Layer in Ferroelectric Thin-Films from Their Switching Parameters , 1995 .

[45]  G. Dormans,et al.  Pulse switching characterization of organometallic chemical vapor deposited PbZrxTi1−xO3 thin films for high-density memory applications , 1995 .

[46]  R. Ideker,et al.  Effects of Polarity for Monophasic and Biphasic Shocks on Defibrillation Efficacy with an Endocardial System , 1996, Pacing and clinical electrophysiology : PACE.

[47]  R. D. Nasby,et al.  Effect of B‐site cation stoichiometry on electrical fatigue of RuO2//Pb(ZrxTi1−x)O3//RuO2 capacitors , 1996 .

[48]  B. Roth Strength‐Interval Curves for Cardiac Tissue Predicted Using the Bidomain Model , 1996, Journal of cardiovascular electrophysiology.

[49]  C. Henriquez,et al.  Anisotropy, Fiber Curvature, and Bath Loading Effects on Activation in Thin and Thick Cardiac Tissue Preparations: , 1996, Journal of cardiovascular electrophysiology.

[50]  A. Tagantsev Mechanisms of polarization switching in ferroelectric thin films , 1996 .

[51]  Craig S. Henriquez,et al.  Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis , 1996, Proc. IEEE.

[52]  B. Roth,et al.  The effect of externally applied electrical fields on myocardial tissue , 1996, Proc. IEEE.

[53]  The Effects of La and Nb Modification on Fatigue and Retention Properties of Pb(Ti, Zr)O3 Thin-Film Capacitors. , 1997 .

[54]  R. C. Susil,et al.  A generalized activating function for predicting virtual electrodes in cardiac tissue. , 1997, Biophysical journal.

[55]  A. Tagantsev,et al.  Fatigued state of the Pt-PZT-Pt system , 1997 .

[56]  Hidemi Takasu Integrated ferroelectrics as a strategic device , 1997 .

[57]  D. C. Agrawal,et al.  FATIGUE RESISTANCE IN LEAD ZIRCONATE TITANATE THIN FERROELECTRIC FILMS : EFFECT OF CERIUM DOPING AND FREQUENCY DEPENDENCE , 1997 .

[58]  G. Haertling Thickness dependent properties of acetate-derived PLZT films , 1997 .

[59]  R. M. Wolf,et al.  Thickness dependence of the switching voltage in all-oxide ferroelectric thin-film capacitors prepared by pulsed laser deposition , 1997 .

[60]  M. Brazier,et al.  A critical study of defect migration and ferroelectric fatigue in lead zirconate titanate thin film capacitors under extreme temperatures , 1997 .

[61]  G P Walcott,et al.  Effect of Electrode Polarity on Internal Defibrillation with Monophasic and Biphasic Waveforms Using an Endocardial Lead System , 1997, Journal of cardiovascular electrophysiology.

[62]  T. Shiosaki,et al.  Effects of La and Nb modification on the electrical properties of Pb(Zr, Ti)O3 thin films by MOCVD , 1997 .

[63]  Nava Setter,et al.  Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin film capacitors with Pt electrodes , 1998 .

[64]  N. Trayanova,et al.  The role of cardiac tissue structure in defibrillation. , 1998, Chaos.

[65]  S. Knisley,et al.  Optical mapping of cardiac electrical stimulation. , 1998, Journal of electrocardiology.

[66]  J. Cross,et al.  Characterization of PZT capacitors with SrRuO3 electrodes , 1998 .

[67]  N. Trayanova,et al.  Virtual electrode effects in defibrillation. , 1998, Progress in biophysics and molecular biology.

[68]  I R Efimov,et al.  Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. , 1998, Circulation research.

[69]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[70]  R. Gray,et al.  Spatial and temporal organization during cardiac fibrillation , 1998, Nature.

[71]  Size effects of 0.8SrBi2Ta2O9–0.2Bi3TiNbO9 thin films , 1998 .

[72]  I. Chen,et al.  Fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films , 1998 .

[73]  N. Trayanova,et al.  Modeling defibrillation: effects of fiber curvature. , 1998, Journal of electrocardiology.

[74]  Igor Stolichnov,et al.  COLD-FIELD-EMISSION TEST OF THE FATIGUED STATE OF PB(ZRXTI1-X)O3 FILMS , 1998 .

[75]  A. Tagantsev,et al.  Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes , 1998 .

[76]  N. Setter,et al.  Fatigue and nonlinear dielectric response in sol-gel derived lead zirconate titanate thin films , 1999 .

[77]  J. Cross,et al.  Evaluation of PZT capacitors with Pt/SrRuO3 electrodes for feram , 1999 .

[78]  M. Brazier,et al.  Ferroelectric fatigue of Pb(Zr,Ti)O3 thin films measured in atmospheres of varying oxygen concentration , 1999 .

[79]  Igor Stolichnov,et al.  Top-interface-controlled switching and fatigue endurance of (Pb,La)(Zr,Ti)O3 ferroelectric capacitors , 1999 .

[80]  Nava Setter,et al.  Acceptor dopant effects on endurance of PZT thin films , 1999 .

[81]  A. Tagantsev,et al.  Injection-controlled size effect on switching of ferroelectric thin films , 1999 .

[82]  N. Trayanova,et al.  Anode/cathode make and break phenomena in a model of defibrillation , 1999, IEEE Transactions on Biomedical Engineering.

[83]  Degradation of asymmetrical Pt/SRO/PLZT/Pt capacitors: Role of Pt and oxide electrodes , 1999 .

[84]  N. Trayanova,et al.  Roles of electric field and fiber structure in cardiac electric stimulation. , 1999, Biophysical journal.

[85]  I R Efimov,et al.  Direct Evidence of the Role of Virtual Electrode‐Induced Phase Singularity in Success and Failure of Defibrillation , 2000, Journal of cardiovascular electrophysiology.

[86]  A. Tagantsev,et al.  Dielectric breakdown in (Pb,La)(Zr,Ti)O3 ferroelectric thin films with Pt and oxide electrodes , 2000 .

[87]  James F. Scott,et al.  A model for fatigue in ferroelectric perovskite thin films , 2000 .

[88]  S. Trolier-McKinstry,et al.  Orientation dependence of fatigue behavior in relaxor ferroelectric–PbTiO3 thin films , 2000 .

[89]  K Skouibine,et al.  A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium. , 2000, Mathematical biosciences.

[90]  N Trayanova,et al.  Termination of Spiral Waves with Biphasic Shocks: , 2000, Journal of cardiovascular electrophysiology.

[91]  G. Rosenman,et al.  Fluctuon effects in ferroelectric polarization switching , 2000 .

[92]  Rainer Waser,et al.  Lifetime estimation due to imprint failure in ferroelectric SrBi2Ta2O9 thin films , 2000 .

[93]  Effect of RuO2 growth temperature on ferroelectric properties of RuO2/Pb(Zr, Ti)O3/RuO2/Pt capacitors , 2000 .

[94]  A. Tagantsev,et al.  Downscaling of Pb(Zr,Ti)O3 film thickness for low-voltage ferroelectric capacitors: Effect of charge relaxation at the interfaces , 2000 .

[95]  N. Trayanova,et al.  Virtual electrode polarization in the far field: implications for external defibrillation. , 2000, American journal of physiology. Heart and circulatory physiology.

[96]  N. Trayanova,et al.  Success and Failure of the Defibrillation Shock: , 2000, Journal of cardiovascular electrophysiology.

[97]  J. Scott,et al.  Addendum: “A model for fatigue in ferroelectric perovskite thin films” [Appl. Phys. Lett. 76, 1060 (2000)] , 2000 .

[98]  I R Efimov,et al.  Virtual Electrodes and Deexcitation: New Insights into Fibrillation Induction and Defibrillation , 2000, Journal of cardiovascular electrophysiology.

[99]  R. Waser,et al.  Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films , 2000 .

[100]  B. Roth,et al.  Experimental and Theoretical Analysis of Phase Singularity Dynamics in Cardiac Tissue , 2001, Journal of cardiovascular electrophysiology.

[101]  N. Trayanova,et al.  Virtual Electrode Polarization Leads to Reentry in the Far Field , 2001, Journal of cardiovascular electrophysiology.

[102]  Well-size-controlled Colloidal Gold Nanoparticles Dispersed in Organic Solvents , 2001 .

[103]  I R Efimov,et al.  The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity. , 2001, Canadian journal of physiology and pharmacology.

[104]  N. Trayanova,et al.  Computationally efficient methods for solving the bidomain equations in 3D , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[105]  N. Trayanova,et al.  Phase Singularities and Termination of Spiral Wave Reentry , 2002 .

[106]  Felipe Aguel,et al.  Computer simulations of cardiac defibrillation: a look inside the heart , 2002 .

[107]  Natalia A. Trayanova,et al.  Computational techniques for solving the bidomain equations in three dimensions , 2002, IEEE Transactions on Biomedical Engineering.