Motion correction in optoacoustic mesoscopy

Raster-scan optoacoustic mesoscopy (RSOM), also termed photoacoustic mesoscopy, offers novel insights into vascular morphology and pathophysiological biomarkers of skin inflammation in vivo at depths unattainable by other optical imaging methods. Using ultra-wideband detection and focused ultrasound transducers, RSOM can achieve axial resolution of 4 micron and lateral resolution of 20 micron to depths of several millimeters. However, motion effects may deteriorate performance and reduce the effective resolution. To provide high-quality optoacoustic images in clinical measurements, we developed a motion correction algorithm for RSOM. The algorithm is based on observing disruptions of the ultrasound wave front generated by the vertical movement of the melanin layer at the skin surface. From the disrupted skin surface, a smooth synthetic surface is generated, and the offset between the two surfaces is used to correct for the relative position of the ultrasound detector. We test the algorithm in measurements of healthy and psoriatic human skin and achieve effective resolution up to 5-fold higher than before correction. We discuss the performance of the correction algorithm and its implications in the context of multispectral mesoscopy.

[1]  Vasilis Ntziachristos,et al.  Three‐dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo , 2016, Journal of biophotonics.

[2]  Vasilis Ntziachristos,et al.  Optoacoustic Dermoscopy of the Human Skin: Tuning Excitation Energy for Optimal Detection Bandwidth With Fast and Deep Imaging in vivo , 2017, IEEE Transactions on Medical Imaging.

[3]  J. Laufer,et al.  In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy , 2009, Physics in medicine and biology.

[4]  V. Ntziachristos,et al.  Video rate optoacoustic tomography of mouse kidney perfusion. , 2010, Optics letters.

[5]  Vasilis Ntziachristos,et al.  Broadband mesoscopic optoacoustic tomography reveals skin layers. , 2014, Optics letters.

[6]  Vasilis Ntziachristos,et al.  Pushing the Optical Imaging Limits of Cancer with Multi-Frequency-Band Raster-Scan Optoacoustic Mesoscopy (RSOM) , 2015, Neoplasia.

[7]  V. Ntziachristos,et al.  Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy , 2017, Nature Biomedical Engineering.

[8]  Vasilis Ntziachristos,et al.  Real-time handheld multispectral optoacoustic imaging. , 2013, Optics letters.

[9]  Vasilis Ntziachristos,et al.  Advances in real-time multispectral optoacoustic imaging and its applications , 2015, Nature Photonics.

[10]  Lihong V. Wang,et al.  Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging , 2006, Nature Biotechnology.

[11]  Konstantin Maslov,et al.  Retrospective respiration-gated whole-body photoacoustic computed tomography of mice , 2014, Journal of biomedical optics.

[12]  Vasilis Ntziachristos,et al.  24-MHz Scanner for Optoacoustic Imaging of Skin and Burn , 2014, IEEE Transactions on Medical Imaging.

[13]  Vasilis Ntziachristos,et al.  Implications of Ultrasound Frequency in Optoacoustic Mesoscopy of the Skin , 2015, IEEE Transactions on Medical Imaging.

[14]  Vasilis Ntziachristos,et al.  Ultrawideband reflection-mode optoacoustic mesoscopy. , 2014, Optics letters.

[15]  Vasilis Ntziachristos,et al.  Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system , 2016, SPIE BiOS.

[16]  Vasilis Ntziachristos,et al.  Isotropic high resolution optoacoustic imaging with linear detector arrays in bi-directional scanning. , 2015, Journal of biophotonics.

[17]  V Ntziachristos,et al.  Three-dimensional optoacoustic tomography at video rate. , 2012, Optics express.

[18]  M. Kohl,et al.  Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. , 1998, Physics in medicine and biology.

[19]  Lihong V. Wang,et al.  In vivo multiscale photoacoustic microscopy of human skin , 2011, BiOS.

[20]  Vasilis Ntziachristos,et al.  Motion clustering for deblurring multispectral optoacoustic tomography images of the mouse heart. , 2012, Journal of biomedical optics.

[21]  E. Farber,et al.  The natural history of psoriasis in 5,600 patients. , 1974, Dermatologica.

[22]  Lihong V. Wang,et al.  In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus. , 2011, Journal of biomedical optics.

[23]  K. Barrett,et al.  Ganong's Review of Medical Physiology , 2010 .

[24]  Vasilis Ntziachristos,et al.  Raster-scan optoacoustic mesoscopy in the 25-125 MHz range. , 2013, Optics letters.

[25]  A. Walch,et al.  Optoacoustic Imaging and Staging of Inflammation in a Murine Model of Arthritis , 2014, Arthritis & rheumatology.

[26]  Boris Hermann,et al.  In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies. , 2015, Biomedical optics express.

[27]  A. Rodríguez-Molinero,et al.  Normal Respiratory Rate and Peripheral Blood Oxygen Saturation in the Elderly Population , 2013, Journal of the American Geriatrics Society.

[28]  Robert A. McLaughlin,et al.  Motion correction of in vivo three-dimensional optical coherence tomography of human skin using a fiducial marker , 2012, Biomedical optics express.

[29]  Marc Fournelle,et al.  Optoacoustic Imaging of Subcutaneous Microvasculature With a Class one Laser , 2014, IEEE Transactions on Medical Imaging.