Visual hull method for tomographic PIV measurement of flow around moving objects

Tomographic particle image velocimetry (PIV) is a recently developed method to measure three components of velocity within a volumetric space. We present a visual hull technique that automates identification and masking of discrete objects within the measurement volume, and we apply existing tomographic PIV reconstruction software to measure the velocity surrounding the objects. The technique is demonstrated by considering flow around falling bodies of different shape with Reynolds number ~1,000. Acquired image sets are processed using separate routines to reconstruct both the volumetric mask around the object and the surrounding tracer particles. After particle reconstruction, the reconstructed object mask is used to remove any ghost particles that otherwise appear within the object volume. Velocity vectors corresponding with fluid motion can then be determined up to the boundary of the visual hull without being contaminated or affected by the neighboring object velocity. Although the visual hull method is not meant for precise tracking of objects, the reconstructed object volumes nevertheless can be used to estimate the object location and orientation at each time step.

[1]  S. Balachandar,et al.  Turbulent Dispersed Multiphase Flow , 2010 .

[2]  G. Elsinga,et al.  Tomographic particle image velocimetry and its application to turbulent boundary layers , 2008 .

[3]  Klaus D. Hinsch REVIEW ARTICLE: Holographic particle image velocimetry , 2002 .

[4]  Julio Soria,et al.  An efficient simultaneous reconstruction technique for tomographic particle image velocimetry , 2009 .

[5]  L. Lourenço Particle Image Velocimetry , 1989 .

[6]  Bernhard Wieneke,et al.  Volume self-calibration for 3D particle image velocimetry , 2008 .

[7]  D Verhoeven,et al.  Limited-data computed tomography algorithms for the physical sciences. , 1993, Applied optics.

[8]  A. Laurentini,et al.  The Visual Hull Concept for Silhouette-Based Image Understanding , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  József Bokor,et al.  Longitudinal Motion Control of a High-Speed Supercavitation Vehicle , 2007 .

[10]  Dirk Michaelis,et al.  Tomographic and time resolved PIV measurements on a finite cylinder mounted on a flat plate , 2008 .

[11]  Aldo Laurentini,et al.  How Many 2D Silhouettes Does It Take to Reconstruct a 3D Object? , 1997, Comput. Vis. Image Underst..

[12]  Jerry Westerweel,et al.  Full 3D-3C velocity measurement inside a liquid immersion droplet , 2011 .

[13]  B. Wieneke,et al.  Time resolved PIV and flow visualization of 3D sheet cavitation , 2006 .

[14]  Edward J. Buskey,et al.  Copepod sensitivity to flow fields: detection by copepods of predatory ctenophores , 2006 .

[15]  Nicholas A. Worth,et al.  Acceleration of Tomo-PIV by estimating the initial volume intensity distribution , 2008 .

[16]  Ellen K. Longmire,et al.  Simultaneous two-phase PIV by two-parameter phase discrimination , 2002 .

[17]  Michael B. Reiser,et al.  A test bed for insect-inspired robotic control , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Ellen K. Longmire,et al.  Investigation of liquid–liquid drop coalescence using tomographic PIV , 2010 .

[19]  A. Techet,et al.  Simultaneous quantitative flow measurement using PIV on both sides of the air–water interface for breaking waves , 2011 .

[20]  Matthias Kühn,et al.  Large-scale tomographic particle image velocimetry using helium-filled soap bubbles , 2011 .

[21]  Ramesh Raskar,et al.  Image-based visual hulls , 2000, SIGGRAPH.

[22]  Tee Tai Lim,et al.  On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings , 2010 .

[23]  Jun Sakakibara,et al.  High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids , 2004 .

[24]  Long Wang,et al.  Dolphin-like propulsive mechanism based on an adjustable Scotch yoke , 2009 .

[25]  Armin Gruen,et al.  Particle tracking velocimetry in three-dimensional flows , 1993, Experiments in Fluids.

[26]  Stefano Discetti,et al.  A fast multi-resolution approach to tomographic PIV , 2012 .

[27]  Volkan Atalay,et al.  Silhouette-based 3-D model reconstruction from multiple images , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[28]  George V Lauder,et al.  Volumetric imaging of fish locomotion , 2011, Biology Letters.

[29]  Jun Sakakibara,et al.  Stereo-PIV study of flow around a maneuvering fish , 2004 .

[30]  A. Lent,et al.  Iterative reconstruction algorithms. , 1976, Computers in biology and medicine.

[31]  K. Kiger,et al.  PIV Technique for the Simultaneous Measurement of Dilute Two-Phase Flows , 2000 .

[32]  Kees Joost Batenburg,et al.  Motion tracking-enhanced MART for tomographic PIV , 2010 .

[33]  G. Hounsfield Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. , 1973, The British journal of radiology.

[34]  Fulvio Scarano,et al.  Three-dimensional vorticity patterns of cylinder wakes , 2009 .

[35]  Jerry Westerweel,et al.  Tomographic-PIV measurement of the flow around a zigzag boundary layer trip , 2012 .

[36]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[37]  Klaus D. Hinsch,et al.  Holographic particle image velocimetry , 2004 .

[38]  Donald R. Webster,et al.  The Hydrodynamics of Chemical Cues Among Aquatic Organisms , 2009 .

[39]  P.R. Bandyopadhyay,et al.  Trends in biorobotic autonomous undersea vehicles , 2005, IEEE Journal of Oceanic Engineering.

[40]  John O. Dabiri,et al.  Vortex-enhanced propulsion , 2010, Journal of Fluid Mechanics.

[41]  C. Willert,et al.  Three-dimensional particle imaging with a single camera , 1992 .

[42]  Edward J. Buskey,et al.  Copepod escape behavior in non-turbulent and turbulent hydrodynamic regimes , 2007 .

[43]  Hyung Jin Sung,et al.  PIV measurement of flow around an arbitrarily moving body , 2011 .

[44]  Seung Hwan Ko,et al.  Simultaneous PIV Measurement of Flow around a Moving Body , 2011 .

[45]  Bernhard Wieneke,et al.  Tomographic particle image velocimetry , 2006 .