A Generalized Randomization Approach to Local Measures of Spatial Association

This article establishes a unified randomization significance testing framework upon which various local measures of spatial association are commonly predicated. The generalized randomization approach presented is composed of two testing procedures, the extended Mantel test and the generalized vector randomization test. These two procedures employ different randomization assumptions, namely total and conditional randomization, according to the way in which they incorporate local measures. By properly specifying necessary matrices and vectors for a particular local measure of spatial association under a particular randomization assumption, the generalized randomization approach as a whole yields a reliable set of equations for expected values and variances, which then is confirmed by a Monte Carlo simulation utilizing random permutations. El estudio presente busca establecer un marco general para pruebas de significancia de aleatorizacion en la cual se basan varias medidas de asociacion espacial. El metodo generalizado de aleatorizacion presentado en el presente estudio esta compuesto por dos procedimientos: una extension de la prueba de Mantel, y la prueba generalizada de aleatorizacion vector (generalized vector randomization test). Ambos procedimientos emplean diferentes supuestos. Uno usa aleatorizacion total y el otro aleatorizacion condicional, dependiendo de la manera en que se incorporan las medidas de asociacion local. El metodo propuesto aqui utiliza las matrices y vectores apropiados para cada una de las medidas de asociacion local y los supuestos de aleatorizacion que les corresponden. De esta manera se obtienen ecuaciones para valores esperados y varianzas que son confiables en su conjunto, los mismos que son verificados mediante una simulacion Monte Carlo bajo el supuesto de permutaciones aleatorias. 本文建立了一个统一的随机显著性检验分析框架,进而给出了测定各种不同空间关联性局域测度的一般方法。本文所提出的广义的随机方法由两个检验过程所构成,分别为扩展的曼特尔检验和广义向量的随机性检验。根据它们与局域测度结合方式的不同,这两个过程中采用了不同的随机假设,即总体随机假设和条件随机假设。在具体的随机假设条件下,为具体的空间关联性局域测度合理地给定相应的矩阵和向量,广义随机方法总体上为期望值和方差的计算形成了可靠的方程组,该方法也被基于随机序列的蒙特卡罗模拟所证实。

[1]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[2]  Sang-Il Lee,et al.  Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I , 2001, J. Geogr. Syst..

[3]  Daniel Wartenberg,et al.  Multivariate Spatial Correlation: A Method for Exploratory Geographical Analysis , 2010 .

[4]  Lawrence Hubert,et al.  Statistical applications of linear assignment , 1984 .

[5]  Yee Leung,et al.  Statistical Test for Local Patterns of Spatial Association , 2003 .

[6]  Michael Tiefelsdorf,et al.  Modelling Spatial Processes , 2000 .

[7]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[8]  Michael Tiefelsdorf,et al.  Global and local spatial autocorrelation in bounded regular tessellations , 2000, J. Geogr. Syst..

[9]  Jack Siemiatycki,et al.  Mantel's space-time clustering statistic: computing higher moments and a comparison of various data transforms , 1978 .

[10]  A. Unwin,et al.  Spatial Data Analysis with Local Statistics , 1998 .

[11]  J. Ord,et al.  Testing for Local Spatial Autocorrelation in the Presence of Global Autocorrelation , 2001 .

[12]  Paul W. Mielke,et al.  On asymptotic non-normality of null distributions of mrpp statistics , 1979 .

[13]  B. Boots,et al.  A Note on the Extremities of Local Moran's Iis and Their Impact on Global Moran's I , 2010 .

[14]  R. Czaplewski,et al.  Spatial cross-correlation of undisturbed, natural shortleaf pine stands in northern Georgia , 1994, Environmental and Ecological Statistics.

[15]  K. Ruben Gabriel,et al.  A permutation test of association between configurations by means of the rv coefficient , 1998 .

[16]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[17]  A. Stewart Fotheringham,et al.  Trends in quantitative methods I: stressing the local , 1997 .

[18]  Reginald G. Golledge,et al.  A Higher Moment for Spatial Statistics , 2010 .

[19]  Michael Tiefelsdorf,et al.  SOME PRACTICAL APPLICATIONS OF MORAN'S I'S EXACT CONDITIONAL DISTRIBUTION , 2005 .

[20]  Sang-Il Lee,et al.  A Generalized Significance Testing Method for Global Measures of Spatial Association: An Extension of the Mantel Test , 2004 .

[21]  Lw Hepple,et al.  Exact Testing for Spatial Autocorrelation among Regression Residuals , 1998 .

[22]  Daniel A. Griffith,et al.  A Variance-Stabilizing Coding Scheme for Spatial Link Matrices , 1999 .

[23]  Barry Boots,et al.  Developing local measures of spatial association for categorical data , 2003, J. Geogr. Syst..

[24]  Robert R. Sokal,et al.  Local Spatial Autocorrelation in a Biological Model , 2010 .

[25]  J. Ord,et al.  Local Spatial Autocorrelation Statistics: Distributional Issues and an Application , 2010 .

[26]  Sang-Il Lee Spatial association measures for an ESDA-GIS framework : developments, significance tests, and applications to spatio-temporal income dynamics of U.S. Labor Market Areas, 1969-1999 / , 2002 .

[27]  A. Stewart Fotheringham,et al.  Local Forms of Spatial Analysis , 2010 .