Efficient and precise generation of Tay–Sachs disease model in rabbit by prime editing system

[1]  David R. Liu,et al.  Search-and-replace genome editing without double-strand breaks or donor DNA , 2019, Nature.

[2]  James E Haber,et al.  The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. , 2016, DNA repair.

[3]  Ricardo Villamarín-Salomón,et al.  ClinVar: public archive of interpretations of clinically relevant variants , 2015, Nucleic Acids Res..

[4]  B. van Steensel,et al.  Easy quantitative assessment of genome editing by sequence trace decomposition , 2014, Nucleic acids research.

[5]  W. Tian,et al.  Generation of knockout rabbits using transcription activator-like effector nucleases , 2014, Cell Regeneration.

[6]  S. Schöniger,et al.  GM2 gangliosidosis in an adult pet rabbit. , 2013, Journal of comparative pathology.

[7]  L. Peleg,et al.  Origin and spread of the 1278insTATC mutation causing Tay-Sachs disease in Ashkenazi Jews: genetic drift as a robust and parsimonious hypothesis , 2004, Human Genetics.

[8]  V. Perry,et al.  An Inducible Mouse Model of Late Onset Tay–Sachs Disease , 2002, Neurobiology of Disease.

[9]  E. Kolodny,et al.  Molecular genetics of the beta-hexosaminidase isoenzymes: an introduction. , 2001, Advances in genetics.

[10]  N Hanai,et al.  Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. , 1996, Human molecular genetics.

[11]  R. Myerowitz,et al.  The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. , 1988, The Journal of biological chemistry.

[12]  M. Spadoni I. Introduction , 1959 .