The output regulation problem : a convergent dynamics approach

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

[1]  V. Wadhawan Smart structures and materials , 2005 .

[2]  JieHUANG,et al.  Control design for the nonlinear benchmark problem via the output regulation method , 2004 .

[3]  Alexander L. Fradkov,et al.  Nonlinear and Adaptive Control of Complex Systems , 1999 .

[4]  Christopher I. Byrnes,et al.  Output regulation for nonlinear systems: an overview , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[5]  Rha Ron Hensen,et al.  Controlled mechanical systems with friction , 2002 .

[6]  Christopher I. Byrnes,et al.  Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation , 2003, IEEE Trans. Autom. Control..

[7]  V. Anantharam,et al.  Tracking and disturbance rejection of MIMO nonlinear systems with a PI or PS controller , 1985, 1985 24th IEEE Conference on Decision and Control.

[8]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[9]  W. Wonham,et al.  Error feedback and internal models on differentiable manifolds , 1982, 1982 21st IEEE Conference on Decision and Control.

[10]  Nathan van de Wouw,et al.  The local output regulation problem: Convergence region estimates , 2003, 2003 European Control Conference (ECC).

[11]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[12]  C. Desoer,et al.  Tracking and Disturbance Rejection of MIMO Nonlinear Systems with PI Controller , 1985, 1985 American Control Conference.

[13]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[14]  Henk Nijmeijer,et al.  System identification in communication with chaotic systems , 2000 .

[15]  Karl Johan Åström,et al.  Control of complex systems , 2001 .

[16]  G. Scorletti,et al.  Nonlinear performance of a PI controlled missile: an explanation , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[17]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[18]  H. Nijmeijer,et al.  Convergent systems and the output regulation problem , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[19]  A. Juloski,et al.  Observer design for a class of piece-wise affine systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[20]  Jie Huang,et al.  On a nonlinear multivariable servomechanism problem , 1990, Autom..

[21]  Mrdjan Jankovic,et al.  TORA example: cascade- and passivity-based control designs , 1996, IEEE Trans. Control. Syst. Technol..

[22]  Zhong-Ping Jiang,et al.  Global output-feedback tracking for a benchmark nonlinear system , 2000, IEEE Trans. Autom. Control..

[23]  Vimal Singh,et al.  Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  D. Bernstein,et al.  Global stabilization of the oscillating eccentric rotor , 1994 .

[25]  E. Davison,et al.  Multivariable tuning regulators: The feedforward and robust control of a general servomechanism problem , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[26]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[27]  Hélène Frankowska Global output regulation of nonlinear systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[28]  Zhengtao Ding,et al.  Global output regulation of uncertain nonlinear systems with exogenous signals , 2001, Autom..

[29]  Henk Nijmeijer,et al.  A dynamical control view on synchronization , 2001 .

[30]  H. Khalil,et al.  On the design of robust servomechanisms for minimum phase nonlinear systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[31]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[32]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[33]  Krešimir Josić,et al.  INVARIANT MANIFOLDS AND SYNCHRONIZATION OF COUPLED DYNAMICAL SYSTEMS , 1998 .

[34]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[35]  Nathan van de Wouw,et al.  Global robust output regulation for Lur'e systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[36]  B. Francis The linear multivariable regulator problem , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[37]  R. Marino,et al.  Global adaptive output-feedback control of nonlinear systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[38]  H Henk Nijmeijer,et al.  Regulation and controlled synchronization for complex dynamical systems , 2000 .

[39]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[40]  Jaime Alvarez-Gallegos,et al.  Active vibration control of an oscillating rigid bar using nonlinear output regulation techniques , 2000, Smart Structures.

[41]  Marcel François Heertjes,et al.  Stability and performance of a variable gain controller with application to a dvd storage drive , 2004, Autom..

[42]  W. Rugh,et al.  An approximation method for the nonlinear servomechanism problem , 1992 .

[43]  Eduardo D. Sontag,et al.  On the Input-to-State Stability Property , 1995, Eur. J. Control.

[44]  A. Isidori A remark on the problem of semiglobal nonlinear output regulation , 1997, IEEE Trans. Autom. Control..

[45]  S. Wiggins Normally Hyperbolic Invariant Manifolds in Dynamical Systems , 1994 .

[46]  A. Isidori,et al.  Global robust output regulation for a class of nonlinear systems , 2000 .

[47]  A. Y. Pogromski,et al.  Passivity based design of synchronizing systems , 1998 .

[48]  H. Nijmeijer,et al.  The global output regulation problem: an incremental stability approach , 2004 .

[49]  Kameshwar Poolla,et al.  Robust regulation in the presence of norm-bounded uncertainty , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[50]  N. Wouw,et al.  The uniform global output regulation problem , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[51]  Henk Nijmeijer,et al.  The local approximate output regulation problem: convergence region estimates , 2005 .

[52]  Jie Huang,et al.  A general formulation and solvability of the global robust output regulation problem , 2005, IEEE Trans. Autom. Control..

[53]  Stephen P. Boyd,et al.  Control System Analysis and Synthesis via Linear Matrix Inequalities , 1993, 1993 American Control Conference.

[54]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  Lorenzo Marconi,et al.  Robust nonlinear motion control of a helicopter , 2003, IEEE Trans. Autom. Control..

[56]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[57]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[58]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[59]  Jie Huang Asymptotic tracking and disturbance rejection in uncertain nonlinear systems , 1995, IEEE Trans. Autom. Control..

[60]  R. Marino,et al.  Global adaptive output-feedback control of nonlinear systems. I. Linear parameterization , 1993, IEEE Trans. Autom. Control..

[61]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[62]  Jie Huang,et al.  Approximate nonlinear output regulation based on the universal approximation theorem , 2000 .

[63]  C. Desoer,et al.  The robust nonlinear servomechanism problem , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[64]  V. A. Pliss Nonlocal Problems of the Theory of Oscillations , 1966 .

[65]  S. Monaco,et al.  A link between input-output stability and Lyapunov stability , 1996 .

[66]  Devi D Putra,et al.  Control of limit cycling in frictional mechanical systems , 2004 .

[67]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[68]  Alberto Isidori,et al.  Robust regulation for nonlinear systems with gain-bounded uncertainties , 1995, IEEE Trans. Autom. Control..

[69]  W. Rugh,et al.  Stabilization on zero-error manifolds and the nonlinear servomechanism problem , 1992 .

[70]  Jie Huang,et al.  Global Robust Servomechanism Problem of Lower-Triangular Systems in the General Case 1 , 2003 .

[71]  A. Isidori,et al.  Topics in Control Theory , 2004 .

[72]  Bhm Björn Bukkems Friction induced limit cycling:an experimental case study , 2001 .

[73]  S. Monaco,et al.  Asymptotic properties of incrementally stable systems , 1996, IEEE Trans. Autom. Control..

[74]  A. Serrani,et al.  Global robust servomechanism theory for nonlinear systems in lower-triangular form , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[75]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[76]  Walter Murray Wonham,et al.  Structurally stable nonlinear regulation with step inputs , 1984, Mathematical systems theory.

[77]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[78]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .

[79]  Lorenzo Marconi,et al.  Autonomous vertical landing on an oscillating platform: an internal-model based approach , 2002, Autom..