Multiscale Modeling of EEG/MEG Response of a Compact Cluster of Tightly Spaced Pyramidal Neocortical Neurons

In this study, the boundary element fast multipole method or BEM-FMM is applied to model compact clusters of tightly spaced pyramidal neocortical neurons firing simultaneously and coupled with a high-resolution macroscopic head model. The algorithm is capable of processing a very large number of surface-based unknowns along with a virtually unlimited number of elementary microscopic current dipole sources distributed within the neuronal arbor.

[1]  N. Draper,et al.  An Alternative Family of Transformations , 1980 .

[2]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[3]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[4]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[5]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[6]  Onno W. Weier,et al.  On the numerical accuracy of the boundary element method (EEG application) , 1989, IEEE Transactions on Biomedical Engineering.

[7]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[8]  Robert Plonsey,et al.  Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields , 1995 .

[9]  Heinrich Müller,et al.  Improved Laplacian Smoothing of Noisy Surface Meshes , 1999, Comput. Graph. Forum.

[10]  F. Benes,et al.  The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects , 2001, Biological Psychiatry.

[11]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[12]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[13]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[14]  Harald Köstler,et al.  Numerical Mathematics of the Subtraction Method for the Modeling of a Current Dipole in EEG Source Reconstruction Using Finite Element Head Models , 2007, SIAM J. Sci. Comput..

[15]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[16]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[17]  L. Trahms,et al.  Magnetoencephalography with a chip-scale atomic magnetometer , 2012, Biomedical optics express.

[18]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[19]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[20]  L. Greengard,et al.  Computational Software: Simple FMM Libraries for Electrostatics, Slow Viscous Flow, and Frequency-Domain Wave Propagation , 2015 .

[21]  Shingo Murakami,et al.  Invariance in current dipole moment density across brain structures and species: Physiological constraint for neuroimaging , 2015, NeuroImage.

[22]  R. L. Hadimani Erik G. Lee Population Head Model Repository V1.0 , 2016 .

[23]  E. G. Lee,et al.  Investigational Effect of Brain-Scalp Distance on the Efficacy of Transcranial Magnetic Stimulation Treatment in Depression , 2016, IEEE Transactions on Magnetics.

[24]  Jung-Pyo Hong,et al.  Characteristics of IPMSM According to Rotor Design Considering Nonlinearity of Permanent Magnet , 2016, IEEE Transactions on Magnetics.

[25]  C. Moore,et al.  Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice , 2016, Proceedings of the National Academy of Sciences.

[26]  Yoshio Okada,et al.  Direct neural current imaging in an intact cerebellum with magnetic resonance imaging , 2016, NeuroImage.

[27]  Carsten H. Wolters,et al.  A Discontinuous Galerkin Method to Solve the EEG Forward Problem Using the Subtraction Approach , 2015, SIAM J. Sci. Comput..

[28]  Matti Stenroos,et al.  Measuring MEG closer to the brain: Performance of on-scalp sensor arrays , 2016, NeuroImage.

[29]  Sergey N. Makarov,et al.  A Quasi-Static Boundary Element Approach With Fast Multipole Acceleration for High-Resolution Bioelectromagnetic Models , 2018, IEEE Transactions on Biomedical Engineering.

[30]  K. R. Ridderinkhof,et al.  No Evidence That Frontal Eye Field tDCS Affects Latency or Accuracy of Prosaccades , 2018, bioRxiv.

[31]  S. Makarov,et al.  Microscopic and Macroscopic Response of a Cortical Neuron to an External Electric Field Computed with the Boundary Element Fast Multipole Method , 2018, bioRxiv.

[32]  Robert Oostenveld,et al.  The Discontinuous Galerkin Finite Element Method for Solving the MEG and the Combined MEG/EEG Forward Problem , 2018, Front. Neurosci..

[33]  Josef Parvizi,et al.  Promises and limitations of human intracranial electroencephalography , 2018, Nature Neuroscience.

[34]  M. Chiappalone,et al.  Technological Approaches for Neurorehabilitation: From Robotic Devices to Brain Stimulation and Beyond , 2018, Front. Neurol..

[35]  B. B. Zaidan,et al.  A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations , 2018, Comput. Methods Programs Biomed..

[36]  Z. Borhegyi,et al.  In vitro and in vivo stability of black-platinum coatings on flexible, polymer microECoG arrays , 2018, Journal of neural engineering.

[37]  Aapo Nummenmaa,et al.  Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS) , 2019, Journal of neural engineering.

[38]  A. Jackson,et al.  Sequential Neural Activity in Primary Motor Cortex during Sleep , 2019, The Journal of Neuroscience.