Multipath Tracking and Prediction for Multiple-Input Multiple-Output Wireless Channels

In this work we develop and study a framework for tracking and prediction of multipath components for wireless MIMO channels. The proposed methodology is a multi-stage procedure that relies on the concept of hypermodels, which capture the dynamics for each multipath. First the individual multipaths are resolved and extracted. In this work we also develop a new estimation algorithm based on the Evidence Procedure and the SAGE algorithm that allows to determine the number of multipath components. The extracted components are then tracked and predicted over time using hypermodels, which are build iteratively, as the tracking proceeds. For prediction we use linear as well as nonlinear hypermodels. We find that linear predictors are more efficient since they are adapted faster. With only 3 coefficients we achieve prediction horizons up to 3 times the wavelength λ for real-world measured data, as compared to 1.5λ reported so far in the literature.

[1]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[2]  A. Lanterman Schwarz, Wallace, and Rissanen: Intertwining Themes in Theories of Model Selection , 2001 .

[3]  Klaus I. Pedersen,et al.  Channel parameter estimation in mobile radio environments using the SAGE algorithm , 1999, IEEE J. Sel. Areas Commun..

[4]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[5]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[6]  M. W. Oliphant The mobile phone meets the Internet , 1999 .

[7]  Ehud Weinstein,et al.  Parameter estimation of superimposed signals using the EM algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[8]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[9]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[10]  Hans D. Hallen,et al.  Long-range prediction of fading signals , 2000, IEEE Signal Process. Mag..

[11]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[12]  Jorma Rissanen,et al.  Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.

[13]  Josef A. Nossek,et al.  Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden , 1995, IEEE Trans. Signal Process..

[14]  D. Shutin Cluster analysis of wireless channel impulse responses , 2004, International Zurich Seminar on Communications, 2004.

[15]  David J. C. MacKay,et al.  Bayesian Methods for Backpropagation Networks , 1996 .

[16]  Gernot Kubin,et al.  Application of the Evidence Procedure to the Estimation of Wireless Channels , 2007, EURASIP J. Adv. Signal Process..

[17]  R. E. Wheeler Statistical distributions , 1983, APLQ.

[18]  Alfred O. Hero,et al.  Space-alternating generalized expectation-maximization algorithm , 1994, IEEE Trans. Signal Process..

[19]  Michael E. Tipping,et al.  Analysis of Sparse Bayesian Learning , 2001, NIPS.

[20]  G. Kubin,et al.  Power Prediction of Multipath Components in Wireless MIMO Channels , 2005, 2005 5th International Conference on Information Communications & Signal Processing.

[21]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[22]  W. J. Fitzgerald,et al.  The Bayesian approach to signal modelling , 1998 .

[23]  Jeng-Kuang Hwang,et al.  Sinusoidal modeling and prediction of fast fading processes , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[24]  Rodney G. Vaughan,et al.  Short-term mobile channel prediction using discrete scatterer propagation model and subspace signal processing algorithms , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[25]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[26]  Gernot Kubin,et al.  Cluster analysis of wireless channel impulse responses with hidden Markov models , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  Gene H. Golub,et al.  Matrix computations , 1983 .

[28]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[29]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[30]  Knut Conradsen,et al.  A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[31]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[32]  T. Ekman,et al.  Nonlinear prediction of mobile radio channels: measurements and MARS model designs , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[33]  Joel A. Tropp,et al.  Simultaneous sparse approximation via greedy pursuit , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[34]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[35]  Peter Grünwald,et al.  A tutorial introduction to the minimum description length principle , 2004, ArXiv.

[36]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[37]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[38]  Dmitriy Shutin,et al.  Application of the evidence procedure to the estimation of the number of paths in wireless channels , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[39]  Torbjörn Ekman Prediction of Mobile Radio Channels : Modeling and Design , 2002 .

[40]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[41]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[42]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[43]  Dmitriy Shutin,et al.  Application of the Evidence Procedure to Linear Problems in Signal Processing , 2004 .

[44]  Kapil R. Dandekar,et al.  Vector channel modeling and prediction for the improvement of downlink received power , 2002, IEEE Trans. Commun..

[45]  Vijay K. Bhargava,et al.  Recent advances in cellular wireless communications , 1999, IEEE Commun. Mag..

[46]  H. Hallen,et al.  Physical channel modeling, adaptive prediction and transmitter diversity for flat fading mobile channel , 1999, 1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304).

[47]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[48]  Klaus I. Pedersen,et al.  High resolution of electromagnetic waves in time-varying radio channels , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[49]  Alexandra Duel-Hallen,et al.  Deterministic channel modeling and long range prediction of fast fading mobile radio channels , 1998, IEEE Communications Letters.

[50]  R. Heddergott,et al.  Wideband angle of arrival estimation using the SAGE algorithm , 1996, Proceedings of ISSSTA'95 International Symposium on Spread Spectrum Techniques and Applications.

[51]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[52]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[53]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[54]  V. J. Mathews,et al.  Polynomial Signal Processing , 2000 .

[55]  Mohamed-Slim Alouini,et al.  Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis , 2000 .

[56]  Unto K. Laine,et al.  Splitting the unit delay [FIR/all pass filters design] , 1996, IEEE Signal Process. Mag..

[57]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[58]  Hao Ling,et al.  Prediction of fast fading mobile radio channels in wideband communication systems , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[59]  Ernst Bonek,et al.  Improving clustering performance using multipath component distance , 2006 .

[60]  G. Kubin,et al.  Multiple-description coding (MDC) of speech with an invertible auditory model , 1999, 1999 IEEE Workshop on Speech Coding Proceedings. Model, Coders, and Error Criteria (Cat. No.99EX351).

[61]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[62]  John G. Proakis,et al.  Digital Communications , 1983 .

[63]  D. Shutin,et al.  Clustering wireless channel impulse responses in angular-delay domain , 2004, IEEE 5th Workshop on Signal Processing Advances in Wireless Communications, 2004..

[64]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[65]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[66]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[67]  L. Goddard,et al.  Operations Research (OR) , 2007 .

[68]  Frank Frederiksen,et al.  Prediction of future fading based on past measurements , 1999, Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324).

[69]  Ernst Bonek Double-Directional Superresolution Radio Channel Measurements , 2001 .

[70]  Boon Chong Ng,et al.  A structured channel estimator for maximum-likelihood sequence detection , 1997, IEEE Communications Letters.

[71]  David G. Stork,et al.  Pattern Classification , 1973 .

[72]  Douglas D. O'Shaughnessy,et al.  Speech communication : human and machine , 1987 .

[73]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[74]  Gerd Sommerkorn,et al.  Identification of time-variant directional mobile radio channels , 2000, IEEE Trans. Instrum. Meas..

[75]  A. Lanterman Schwarz, Wallace, and Rissanen: Intertwining Themes in Theories of Model Order Estimation , 1999 .