Optical-physical methods of remote diagnostics of high-temperature gas media
暂无分享,去创建一个
D. E. Kashirskii | O. K. Voitsekhovskaya | O. V. Egorov | A. V. Voitsekhovskii | A. Voitsekhovskii | O. Egorov | D. Kashirskii
[1] O. K. Voitsekhovskaya,et al. Spectroscopic support of laser remote sensing of the sulfur dioxide gas in the jet of engine exhaust gases , 2013 .
[2] Gang Li,et al. The HITRAN 2008 molecular spectroscopic database , 2005 .
[3] O. K. Voitsekhovskaya,et al. Determination of dunham coefficients and calculation of the energies of highly excited vibrational-rotational levels of the carbon monoxide molecule in the electronic ground state , 2010 .
[5] O. K. Voitsekhovskaya,et al. The absorption of sulfur dioxide in the terahertz range at temperatures of 300–1200 K , 2013 .
[6] E. R. Polovtseva,et al. The HITRAN2012 molecular spectroscopic database , 2013 .
[7] C. Leroy,et al. High resolution analysis of the SO2 spectrum in the 2600–2900cm−1 region: 2ν3, ν2+2ν3−ν2 and 2ν1+ν2 bands , 2012 .
[8] O. Ulenikov,et al. High resolution study of the 3ν1 band of SO2 , 2009 .
[9] C. Puzzarini,et al. N2-, O2-, H2-, and He-broadening of SO2 rotational lines in the mm-/submm-wave and THz frequency regions: The J and Ka dependence☆ , 2012 .
[10] O. Ulenikov,et al. Analysis of highly excited ‘hot’ bands in the SO2 molecule: ν2 + 3ν3 − ν2 and 2ν1 + ν2 + ν3 − ν2 , 2010 .
[11] A. S. Belova,et al. High resolution analysis of the (111) vibrational state of SO2 , 2014 .
[12] O. Ulenikov,et al. Re-analysis of the (100), (001), and (020) rotational structure of SO2 on the basis of high resolution FTIR spectra , 2013 .
[13] The influence of the microphysical parameters of atmospheric aerosol particles on IR radiation extinction , 2010 .
[14] A. Dvurechenskii,et al. Ge/Si nanoheterostructures with ordered Ge quantum dots for optoelectronic applications , 2011 .