Imaginary-time matrix product state impurity solver for dynamical mean-field theory

We present a new impurity solver for dynamical mean-field theory based on imaginary-time evolution of matrix product states. This converges the self-consistency loop on the imaginary-frequency axis and obtains real-frequency information in a final real-time evolution. Relative to computations on the real-frequency axis, required bath sizes are much smaller and no entanglement is generated, so much larger systems can be studied. The power of the method is demonstrated by solutions of a three-band model in the single- and two-site dynamical mean-field approximation. Technical issues are discussed, including details of the method, efficiency as compared to other matrix-product-state-based impurity solvers, bath construction and its relation to real-frequency computations and the analytic continuation problem of quantum Monte Carlo methods, the choice of basis in dynamical cluster approximation, and perspectives for off-diagonal hybridization functions.

[1]  Guy Cohen,et al.  Numerical operator method for the real-time dynamics of strongly correlated quantum impurity systems far from equilibrium , 2015 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Y. Motome,et al.  Entanglement spectrum in cluster dynamical mean-field theory , 2014, 1406.5960.

[4]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[5]  Martin Ganahl,et al.  Chebyshev expansion for impurity models using matrix product states , 2014, 1403.1209.

[6]  P. Schmitteckert,et al.  Numerical evaluation of Green's functions based on the Chebyshev expansion , 2013, 1310.2724.

[7]  Georges,et al.  Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.

[8]  A. Demkov,et al.  Efficient variational approach to the impurity problem and its application to the dynamical mean-field theory , 2013, 1307.4982.

[9]  T. D. Kuehner,et al.  Dynamical correlation functions using the density matrix renormalization group , 1998, cond-mat/9812372.

[10]  D. Sénéchal Bath optimization in the cellular dynamical mean-field theory , 2010, 1005.1685.

[11]  Dynamical density-matrix renormalization group for the Mott–Hubbard insulator in high dimensions , 2004, cond-mat/0406666.

[12]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[13]  I. McCulloch,et al.  Nonthermal Melting of Néel Order in the Hubbard Model , 2015, 1504.02461.

[14]  O. Gunnarsson,et al.  Efficient real-frequency solver for dynamical mean-field theory , 2014, 1402.0807.

[15]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[16]  Hallberg Density-matrix algorithm for the calculation of dynamical properties of low-dimensional systems. , 1995, Physical review. B, Condensed matter.

[17]  Yu-An Chen,et al.  Density matrix renormalization group , 2014 .

[18]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[19]  D. Savostyanov,et al.  Exact NMR simulation of protein-size spin systems using tensor train formalism , 2014, 1402.4516.

[20]  Yusuke Nomura,et al.  Multiorbital cluster dynamical mean-field theory with an improved continuous-time quantum Monte Carlo algorithm , 2014, 1401.7488.

[21]  Olivier Parcollet,et al.  Chebyshev matrix product state impurity solver for dynamical mean-field theory , 2014, 1407.1622.

[22]  M. Troyer,et al.  Spin freezing transition and non-Fermi-liquid self-energy in a three-orbital model. , 2008, Physical review letters.

[23]  Eran Rabani,et al.  Generalized projected dynamics for non-system observables of non-equilibrium quantum impurity models , 2013, 1304.2216.

[24]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[25]  Emanuel Gull,et al.  Momentum-space anisotropy and pseudogaps: A comparative cluster dynamical mean-field analysis of the doping-driven metal-insulator transition in the two-dimensional Hubbard model , 2010, 1007.2592.

[26]  I. McCulloch,et al.  Spectral functions and time evolution from the Chebyshev recursion , 2015, 1501.07216.

[27]  A. Weichselbaum,et al.  DMFT+NRG study of spin-orbital separation in a three-band Hund's metal , 2015, 1503.06467.

[28]  Steven R White,et al.  Minimally entangled typical quantum States at finite temperature. , 2009, Physical review letters.

[29]  T. Wehling,et al.  Variational exact diagonalization method for Anderson impurity models , 2015, 1503.09047.

[30]  Mott transition in the Hubbard model away from particle-hole symmetry , 2006, cond-mat/0608248.

[31]  U. Schollwöck,et al.  Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain. , 2013, Physical review letters.

[32]  R. Peters Spectral functions for single- and multi-impurity models using density matrix renormalization group , 2011 .

[33]  Eric Jeckelmann Dynamical density-matrix renormalization-group method , 2002 .

[34]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[35]  Emanuel Gull,et al.  Truncated configuration interaction expansions as solvers for correlated quantum impurity models and dynamical mean-field theory , 2012, 1203.1914.

[36]  Garnet Kin-Lic Chan,et al.  Density matrix embedding: a simple alternative to dynamical mean-field theory. , 2012, Physical review letters.

[37]  M. Ferrero,et al.  Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space , 2009, 0903.2480.

[38]  H. Ishida,et al.  Temperature and bath size in exact diagonalization dynamical mean field theory , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  T. Pruschke,et al.  Quantum cluster theories , 2004, cond-mat/0404055.

[40]  W. Linden,et al.  Auxiliary master equation approach to nonequilibrium correlated impurities , 2013, 1312.4586.

[41]  A. Demkov,et al.  Electron correlation in oxygen vacancy in SrTiO3. , 2013, Physical review letters.

[42]  Jinhong Park,et al.  Macroscopic quantum entanglement of a Kondo cloud at finite temperature. , 2014, Physical review letters.

[43]  Daniel J García,et al.  Dynamical mean field theory with the density matrix renormalization group. , 2004, Physical review letters.

[44]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[45]  M. Granath,et al.  Distributional exact diagonalization formalism for quantum impurity models , 2012, 1201.6160.

[46]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[47]  A. I. Lichtenstein,et al.  Continuous-time quantum Monte Carlo method for fermions , 2005 .

[48]  Ulrich Schollwock,et al.  Solving nonequilibrium dynamical mean-field theory using matrix product states , 2014, 1410.3342.

[49]  Satoshi Nishimoto,et al.  Dynamical mean-field theory calculation with the dynamical density-matrix renormalization group , 2006 .

[50]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[51]  P. E. Dargel,et al.  Lanczos algorithm with Matrix Product States for dynamical correlation functions , 2012, 1203.2523.

[52]  W. Marsden I and J , 2012 .

[53]  J. E. Moore,et al.  Finite-temperature dynamical density matrix renormalization group and the Drude weight of spin-1/2 chains. , 2011, Physical review letters.

[54]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[55]  A. Millis,et al.  Metal-insulator phase diagram and orbital selectivity in three-orbital models with rotationally invariant Hund coupling , 2008, 0812.1520.

[56]  R. Arita,et al.  Nonlocal correlations induced by Hund's coupling: A cluster DMFT study , 2014, 1408.4402.

[57]  A. Millis,et al.  Spatial correlations and the insulating phase of the high-T(c) cuprates: insights from a configuration-interaction-based solver for dynamical mean field theory. , 2013, Physical review letters.

[58]  I. McCulloch,et al.  Strictly single-site DMRG algorithm with subspace expansion , 2015, 1501.05504.

[59]  Ulrich Schollwock,et al.  How to discretize a quantum bath for real-time evolution , 2015, 1507.07468.

[60]  Michael Zwolak,et al.  Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. , 2004, Physical review letters.

[61]  T. Pruschke,et al.  Numerical renormalization group method for quantum impurity systems , 2007, cond-mat/0701105.

[62]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[63]  N. Tong,et al.  A standard basis operator equation of motion impurity solver for dynamical mean field theory , 2015, 1501.07689.

[64]  S. White Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.

[65]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[66]  O. Anatole von Lilienfeld,et al.  Machine learning for many-body physics: efficient solution of dynamical mean-field theory , 2015 .

[67]  T. Barthel Precise evaluation of thermal response functions by optimized density matrix renormalization group schemes , 2013, 1301.2246.

[68]  Steven R. White,et al.  Spectral functions in one-dimensional quantum systems at finite temperature using the density matrix renormalization group , 2009 .

[69]  Hai-bo Ma,et al.  Assessment of various natural orbitals as the basis of large active space density-matrix renormalization group calculations. , 2013, The Journal of chemical physics.

[70]  Martin Ganahl,et al.  Efficient DMFT impurity solver using real-time dynamics with matrix product states , 2014, 1405.6728.

[71]  I. McCulloch,et al.  Chebyshev matrix product state approach for spectral functions , 2011, 1101.5895.

[72]  G. Wellein,et al.  The kernel polynomial method , 2005, cond-mat/0504627.

[73]  S. White,et al.  Real-time evolution using the density matrix renormalization group. , 2004, Physical review letters.

[74]  Martin Eckstein,et al.  Hamiltonian-based impurity solver for nonequilibrium dynamical mean-field theory , 2013, 1306.6315.

[75]  M. Karski,et al.  Single-particle dynamics in the vicinity of the Mott-Hubbard metal-to-insulator transition , 2007, 0710.2272.

[76]  Caffarel,et al.  Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity. , 1994, Physical review letters.