Bisphenol A interferes with first shell formation and development of the serotoninergic system in early larval stages of Mytilus galloprovincialis.

[1]  F. Seebacher,et al.  Effect of the plastic pollutant bisphenol A on the biology of aquatic organisms: A meta‐analysis , 2020, Global change biology.

[2]  Lingling Wang,et al.  Ocean acidification inhibits initial shell formation of oyster larvae by suppressing the biosynthesis of serotonin and dopamine. , 2020, The Science of the total environment.

[3]  Yiwei Hu,et al.  A Novel Tyrosinase Gene Plays a Potential Role in Modification the Shell Organic Matrix of the Triangle Mussel Hyriopsis cumingii , 2020, Frontiers in Physiology.

[4]  A. Lenoir,et al.  Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights , 2020, Molecular and Cellular Endocrinology.

[5]  Baozhong Liu,et al.  Dorsoventral decoupling of Hox gene expression underpins the diversification of molluscs , 2019, Proceedings of the National Academy of Sciences.

[6]  L. Kapsenberg,et al.  Standing genetic variation fuels rapid adaptation to ocean acidification , 2019, Nature Communications.

[7]  R. Dumollard,et al.  Characterization of the main steps in first shell formation in Mytilus galloprovincialis: possible role of tyrosinase , 2019, Proceedings of the Royal Society B.

[8]  K. Kho,et al.  Identification, characterization, and expression analysis of a serotonin receptor involved in the reproductive process of the Pacific abalone, Haliotis discus hannai , 2019, Molecular Biology Reports.

[9]  O. Yurchenko,et al.  Peripheral sensory neurons govern development of the nervous system in bivalve larvae , 2019, EvoDevo.

[10]  Kyeong Seop Kim,et al.  Molecular characterization, expression analysis, and functional properties of multiple 5-hydroxytryptamine receptors in Pacific abalone (Haliotis discus hannai). , 2019, General and comparative endocrinology.

[11]  L. Kapsenberg,et al.  Ocean pH fluctuations affect mussel larvae at key developmental transitions , 2018, Proceedings of the Royal Society B.

[12]  M. Bartolomei,et al.  Mice exposed to bisphenol A exhibit depressive-like behavior with neurotransmitter and neuroactive steroid dysfunction , 2018, Hormones and Behavior.

[13]  K. Clark,et al.  Distributions of concentrations of bisphenol A in North American and European surface waters and sediments determined from 19 years of monitoring data. , 2018, Chemosphere.

[14]  Ana Catarina Sousa Environmental contaminants and endocrine disruption: the story of obesogens , 2018 .

[15]  O. Yurchenko,et al.  Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia) , 2018, Frontiers in Zoology.

[16]  A. Joyce,et al.  Molluscan bivalve settlement and metamorphosis: Neuroendocrine inducers and morphogenetic responses , 2018 .

[17]  A. Wanninger,et al.  Towards a ground pattern reconstruction of bivalve nervous systems: neurogenesis in the zebra mussel Dreissena polymorpha , 2018, Organisms Diversity & Evolution.

[18]  Mingzhu Sun,et al.  Impact of low-dose chronic exposure to Bisphenol A (BPA) on adult male zebrafish adaption to the environmental complexity: Disturbing the color preference patterns and reliving the anxiety behavior. , 2017, Chemosphere.

[19]  E. Fabbri,et al.  Impact of bisphenol A (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: Effects on gene transcription. , 2016, Environmental pollution.

[20]  J. M. Torres,et al.  Identification of dopamine- and serotonin-related genes modulated by bisphenol A in the prefrontal cortex of male rats. , 2015, Chemosphere.

[21]  E. Fabbri,et al.  Environmental Effects of BPA , 2015, Dose-response : a publication of International Hormesis Society.

[22]  Jone Corrales,et al.  Global Assessment of Bisphenol A in the Environment , 2015, Dose-response : a publication of International Hormesis Society.

[23]  Camille Mellin,et al.  A review and meta‐analysis of the effects of multiple abiotic stressors on marine embryos and larvae , 2015, Global change biology.

[24]  L. Canesi,et al.  Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis. , 2014, Marine environmental research.

[25]  Shelby A. Flint,et al.  Bisphenol A exposure, effects, and policy: a wildlife perspective. , 2012, Journal of environmental management.

[26]  G. Steiner,et al.  Expression of Hox genes during the larval development of the snail, Gibbula varia (L.)—further evidence of non-colinearity in molluscs , 2010, Development Genes and Evolution.

[27]  G. Steiner,et al.  Involvement of Hox genes in shell morphogenesis in the encapsulated development of a top shell gastropod (Gibbula varia L.) , 2009, Development Genes and Evolution.

[28]  R. Croll,et al.  Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia) , 2008, Zoomorphology.

[29]  David Epel,et al.  Embryo stability and vulnerability in an always changing world , 2007, Proceedings of the National Academy of Sciences.

[30]  M. L. Pérez-Parallé,et al.  The HOX Gene Cluster in the Bivalve Mollusc Mytilus galloprovincialis , 2005, Biochemical Genetics.

[31]  M. Barucca,et al.  Hox and paraHox genes in bivalve molluscs. , 2003, Gene.

[32]  Kurt Wüthrich,et al.  Homeodomain-DNA recognition , 1994, Cell.