LISA source confusion: identification and characterization of signals

The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational radiation from a large number of compact binary systems. We present a method by which these signals can be identified and have their parameters estimated. Our approach uses Bayesian inference, specifically the application of a Markov chain Monte Carlo method. The simulation study that we present here considers a large number of sinusoidal signals in noise, and our method estimates the number of periodic signals present in the data, the parameters for these signals and the noise level. The method is significantly better than classical spectral techniques at performing these tasks and does not use stopping criteria for estimating the number of signals present.

[1]  K. Roeder,et al.  Journal of the American Statistical Association: Comment , 2006 .

[2]  N. Christensen,et al.  Bayesian modeling of source confusion in LISA data , 2005, gr-qc/0506055.

[3]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[4]  Nicholas Rose,et al.  Highly Structured Stochastic Systems , 2005, Technometrics.

[5]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: The how-to of Bayesian inference , 2005 .

[6]  N. Christensen,et al.  Estimating the parameters of gravitational waves from neutron stars using an adaptive MCMC method , 2004 .

[7]  C. Cutler,et al.  Confusion Noise from LISA Capture Sources , 2004, gr-qc/0409010.

[8]  N. Cornish,et al.  LISA Source Confusion , 2004, gr-qc/0404129.

[9]  N. Christensen,et al.  Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data , 2004, gr-qc/0402038.

[10]  A. Libson,et al.  A Metropolis-Hastings routine for estimating parameters from compact binary inspiral events with laser interferometric gravitational radiation data , 2004 .

[11]  M. Benacquista,et al.  A simulation of the laser interferometer space antenna data stream from galactic white dwarf binaries , 2003, gr-qc/0308041.

[12]  Peter Green,et al.  Highly Structured Stochastic Systems , 2003 .

[13]  Karsten Danzmann,et al.  LISA technology - concept, status, prospects , 2003 .

[14]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[15]  N. Cornish,et al.  LISA Data Analysis: Source Identification and Subtraction , 2003, astro-ph/0301548.

[16]  P. Green,et al.  Delayed rejection in reversible jump Metropolis–Hastings , 2001 .

[17]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[18]  C. Robert,et al.  Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .

[19]  Christophe Andrieu,et al.  Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..

[20]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[21]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .

[22]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[23]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[24]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[25]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[26]  T. Loredo From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics , 1990 .

[27]  L. M. Berliner,et al.  Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems , 1989 .

[28]  Marvin H. J. Guber Bayesian Spectrum Analysis and Parameter Estimation , 1988 .

[29]  E. T. Jaynes,et al.  Bayesian Spectrum and Chirp Analysis , 1987 .

[30]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[31]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[32]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[33]  Proceedings of the Royal Society (London) , 1906, Science.

[34]  A. Schuster,et al.  The periodogram and its optical analogy , 1906, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character.

[35]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.