1 – MODIFIED CHEMICAL VAPOR DEPOSITION

[1]  J. Fleming,et al.  Material dispersion in lightguide glasses , 1978 .

[2]  D. Gloge Weakly guiding fibers. , 1971, Applied optics.

[3]  R. Howard,et al.  A single-polarization fiber , 1983 .

[4]  K. Walker,et al.  HIGH RATE FABRICATION OF SINGLE MODE FIBERS , 1982 .

[5]  Y. Ohmori,et al.  Optimum profile parameter on graded-index optical fibre at 1.27 μm wavelength , 1978 .

[6]  David N. Payne,et al.  Determination of the wavelength of zero material dispersion in optical fibres by pulse-delay measurements , 1977 .

[7]  M. Saifi,et al.  Effect of deposition rate on spectral loss of GeO2-P2O5-SiO2 graded index fibres , 1980 .

[8]  Suzanne R. Nagel,et al.  An overview of the modified chemical vapor deposition (MCVD) process and performance , 1982 .

[9]  Benjamin James Ainslie,et al.  Fabrication and evaluation of MCVD single-mode fibres with and without central index depression , 1982 .

[10]  W. L. Mammel,et al.  B.S.T.J. brief: Experimental verification of ultra-wide bandwidth spectra in double-clad single-mode fiber , 1982, The Bell System Technical Journal.

[11]  J. Kirchhof,et al.  A hydrodynamic theory of the collapsing process for the preparation of optical waveguide preforms , 1980 .

[12]  D. L. Wood,et al.  Partition of Hydrogen in the Modified Chemical Vapor Deposition Process , 1981 .

[13]  D. M. Cooper,et al.  Drawing-dependent transmission loss in germania-doped silica optical fibres , 1982 .

[14]  E. Snitzer Cylindrical Dielectric Waveguide Modes , 1961 .

[15]  Katsunari Okamoto,et al.  Dispersion minimisation in single-mode fibres over a wide spectral range , 1979 .

[16]  J. D. Rush,et al.  Interplay of design parameters and fabrication conditions on the performance of monomode fibers made by MCVD , 1981 .

[17]  I P Kaminow,et al.  Binary silica optical fibers: refractive index and profile dispersion measurements. , 1976, Applied optics.

[18]  D. Marcuse,et al.  Radiating leaky-mode losses in single-mode lightguides with depressed-index claddings , 1982 .

[19]  D. Marcuse,et al.  Calculation of bandwidth from index profiles of optical fibers. 2: Experiment. , 1979, Applied optics.

[20]  D. Marcuse,et al.  Calculation of bandwidth from index profiles of optical fibers. 1: Theory. , 1979, Applied Optics.

[21]  Y. Ohmori,et al.  Spectral loss characteristics of GeO2-P2O5-doped silica graded-index fibres in long-wavelength band , 1979 .

[22]  Masao Kawachi,et al.  Low-Loss single-mode fibre at the material-dispersion-free wavelength of 1.27 μm , 1977 .

[23]  Y. Ohmori Transmission bandwidth properties of GeO(2)-P(2)O(5)-doped silica graded-index optical fibers. , 1981, Applied optics.

[24]  K. L. Walker,et al.  The Viscous Collapse of Thick-Walled Tubes , 1983 .

[25]  Leonard George Cohen,et al.  Low-loss quadruple-clad single-mode lightguides with dispersion below 2 ps/km nm over the 1.28 μm–1.65 μm wavelength range , 1982 .

[26]  K. Walker,et al.  Thermophoretic Deposition of Small Particles in the Modified Chemical Vapor Deposition (MCVD) Process , 1980 .

[27]  L. Cohen,et al.  Numerical prediction of fiber transmission characteristics from arbitrary refractive-index profiles. , 1982, Applied optics.

[28]  D. Keck,et al.  On the ultimate lower limit of attenuation in glass optical waveguides , 1973 .

[29]  Leonard George Cohen,et al.  Transmission studies of a long single-mode fiber — measurements and considerations for bandwidth optimization , 1981 .

[30]  F. Kapron,et al.  Pulse transmission through a dielectric optical waveguide. , 1971, Applied optics.

[31]  R Olshansky Distortion losses in cabled optical fibers. , 1975, Applied optics.

[32]  R. G. Sommer,et al.  New glass system for low-loss optical waveguides , 1976 .

[33]  D. Wood,et al.  Investigation of the reactions of SiCl4 and O2 at elevated temperatures by infra-red spectroscopy , 1978 .

[34]  Leonard George Cohen,et al.  Tailoring zero chromatic dispersion into the 1.5-1.6 μm low-loss spectral region of single-mode fibres , 1979 .

[35]  Preparation of long lengths of ultra-low-loss single-mode fibre , 1979 .

[36]  P. Simpkins,et al.  Thermophoresis: The mass transfer mechanism in modified chemical vapor deposition , 1979 .

[37]  W. French,et al.  Chemical kinetics of the reactions of tetrachlorosilane, tetrabromosilane, tetrachlorogermane, phosphoryl chloride, and trichloroborane with oxygen , 1978 .

[38]  W. A. Gambling,et al.  Zero total dispersion in graded-index single-mode fibres , 1979 .

[39]  R. Olshansky,et al.  Pulse broadening in graded-index optical fibers. , 1976, Applied optics.

[40]  G. E. Peterson,et al.  Effects of depressed cladding on the transmission characteristics of single-mode fibers with graded-index profiles. , 1982, Applied optics.

[41]  J. Irven Long wavelength performance of SiO2/GeO2/P2O5 core fibres with different P2O5 levels , 1981 .

[42]  Herman M. Presby,et al.  A new technique for the preparation of low-loss and graded-index optical fibers , 1974 .

[43]  L. Watkins,et al.  Laser beam refraction traversely through a graded-index preform to determine refractive index ratio and gradient profile. , 1979, Applied optics.

[44]  Improved chemical vapour deposition method for long-length optical fibre , 1978 .

[45]  P. Kaiser,et al.  Spectral losses of unclad fibers made from high‐grade vitreous silica , 1973 .

[46]  D. Payne,et al.  Development of low- and high-birefringence optical fibers , 1982 .

[47]  B. Ainslie,et al.  Optimised structure for preparing long ultra-low-loss single-mode fibres , 1980 .

[48]  T. Izawa,et al.  Effect of dopants on transmission loss of low-OH-content optical fibres , 1976 .

[49]  D. Marcuse,et al.  Multimode fiber bandwidth: Theory and practice , 1980, Proceedings of the IEEE.

[50]  M. Saifi,et al.  Incorporation of OH in Glass in the MCVD Process , 1979 .

[51]  J. Stone,et al.  Overtone vibrations of OH groups in fused silica optical fibers. Technical report , 1981 .

[52]  D. Marcuse Multimode fiber with z-dependent alpha-value. , 1979, Applied Optics.

[53]  George M. Homsy,et al.  Thermophoretic deposition of small particles in laminar tube flow , 1979 .

[54]  L. Jeunhomme Dispersion minimisation in single-mode fibres between 1.3 μm and 1.7 μm , 1979 .

[55]  T. Miya,et al.  Ultimate low-loss single-mode fibre at 1.55 μm , 1979 .

[56]  H. Presby,et al.  Low-loss single-mode fibers with different B(2)O(3)-SiO(2) compositions. , 1978, Applied optics.

[57]  S. Kawakami,et al.  Characteristics of a doubly clad optical fiber with a low-index inner cladding , 1974 .

[58]  J. Midwinter,et al.  Studies of monomode long wavelength fiber systems at the British Telecom Research Laboratories , 1981 .

[59]  Y. Ohmori,et al.  Profile dispersion characteristics in high-bandwidth graded-index optical fibers. , 1980, Applied optics.

[60]  N. Shibata,et al.  Optical attenuation in pure and doped fused silica in the ir wavelength region , 1977 .

[61]  D. Powers Kinetics of Sicl4 Oxidation , 1978 .

[62]  J. Macchesney,et al.  Large-core high n.a. fibres for data-link applications , 1977 .

[63]  K. Walker,et al.  Consolidation of Participate Layers in the Fabrication of Optical Fiber Preforms , 1980 .

[64]  Tingye Li,et al.  Research toward optical-fiber transmission systems , 1973 .

[65]  J. D. Rush,et al.  Monomode fibre with ultra-low loss and minimum dispersion at 1.55 μm , 1982 .

[66]  M. Horiguchi,et al.  Spectral losses of low-OH-content optical fibres , 1976 .

[67]  J. Irven,et al.  Single-mode fibers for submarine cable systems , 1981 .

[68]  L. Cohen,et al.  Pulse delay measurements in the zero-material-dispersion region for germanium- and phosphorus-doped silica fibres , 1978 .

[69]  L G Cohen,et al.  Interrelationship between water absorption loss and dispersion in multimode fiber. , 1981, Applied optics.

[70]  T. Akamatsu,et al.  Fabrication of graded‐index fibers without an index dip by chemical vapor deposition method , 1977 .

[71]  J. Macchesney,et al.  The preparation of optical waveguide preforms by plasma deposition , 1978, The Bell System Technical Journal.

[72]  C. Burrus,et al.  B.S.T.J. brief: Reduction of the 1.38-μm water peak in optical fibers by deuterium-hydrogen exchange , 1980, The Bell System Technical Journal.

[73]  David N. Payne,et al.  New silica-based low-loss optical fibre , 1974 .

[74]  J. A. Lewis The collapse of a viscous tube , 1977 .

[75]  T. P. Lee,et al.  Measuring high-bandwidth fibres in the 1.3 μm region with picosecond ingaasp injection lasers and ultrafast ingaas detectors , 1981 .

[76]  Paul D. Lazay,et al.  Developments in single-mode fiber design, materials, and performance at Bell Laboratories , 1982 .

[77]  Tomoo Yanase,et al.  Optical absorption characteristics of hydroxyl radicals in phosphorus-containing silica glass , 1977 .

[78]  J. R. Simpson,et al.  Optical fibres with an Al2O3-doped silicate core composition , 1983 .

[79]  J. Fleming,et al.  Material and Mode Dispersion in GeO2·B2O3·SiC2 Glasses , 1976 .

[80]  J. D. Rush,et al.  The design and fabrication of monomode optical fiber , 1982 .

[81]  Long wavelength performance of optical fibres co-doped with fluorine , 1981 .

[82]  J Stone,et al.  Triangular-profile single-mode fiber. , 1982, Optics letters.

[83]  J. Kirchhof,et al.  About the oxidation of SiCl4 and GeCl4 in homogeneous gaseous phase , 1980 .

[84]  D. Payne,et al.  Zero material dispersion in optical fibres , 1975 .

[85]  Chinlon Lin,et al.  Pulse delay measurements in the zero material dispersion wavelength region for optical fibers. , 1977, Applied optics.

[86]  D Marcuse Interdependence of waveguide and material dispersion. , 1979, Applied optics.

[87]  P. Schultz Optical Absorption of the Transition Elements in Vitreous Silica , 1974 .

[88]  S. C. Mettler,et al.  A loss model for parabolic-profile fiber splices , 1978, The Bell System Technical Journal.

[89]  D. Gloge,et al.  Dispersion in weakly guiding fibers. , 1971, Applied optics.

[90]  G. E. Peterson,et al.  Disperslonless single-mode lightguides with α index profiles , 1981, The Bell System Technical Journal.

[91]  W. Reed,et al.  B.S.T.J. brief: Fabrication and properties of single-mode optical fiber exhibiting low dispersion, low loss, and tight mode confinement simultaneously , 1982, The Bell System Technical Journal.

[92]  David N. Payne,et al.  Measurement of profile dispersion in optical fibres: a direct technique , 1977 .

[93]  H. Murata,et al.  Low-loss single-mode fiber development and splicing research in Japan , 1981 .

[94]  Y. Sasaki,et al.  Fabrication of low dispersion single-mode fibers over a wide spectral range , 1981 .

[95]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .