Luminescent lanthanide sensors for pH, pO2 and selected anions

Stable lanthanide complexes have been devised in which the emission intensity or lifetime is a sensitive function of pH, pO2 or halide concentration following excitation in the range 350–380 nm. The pH-dependent systems report the pKa of the excited singlet or triplet of an integral phenanthridine chromophore. Modulation of the emission may occur via ligand or metal-centred processes: quenching of the singlet or triplet phenanthridine excited state occurs by halide and oxygen respectively; in complexes with chiral heptadentate ligands displacement of bound water molecules by lactate, phosphate and hydrogencarbonate leads to enhancements in the emission intensity and lifetime and pronounced changes in emission polarisation.

[1]  M. Botta,et al.  Nuclear magnetic resonance studies of neutral lanthanide(III) complexes with tetraaza-macrocyclic ligands containing three phosphinate and one carboxamide co-ordinating arms , 1995 .

[2]  A. Beeby,et al.  LUMINESCENCE FROM YTTERBIUM(III) AND ITS COMPLEXES IN SOLUTION , 1997 .

[3]  M. Botta,et al.  Prototropic vs Whole Water Exchange Contributions to the Solvent Relaxation Enhancement in the Aqueous Solution of a Cationic Gd3+ Macrocyclic Complex , 1997 .

[4]  Y. Haas,et al.  PATHWAYS OF RADIATIVE AND RADIATIONLESS TRANSITIONS IN EUROPIUM(III) SOLUTIONS: ROLE OF SOLVENTS AND ANIONS. , 1971 .

[5]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[6]  David Parker,et al.  Taking advantage of the pH and pO2 sensitivity of a luminescent macrocyclic terbium phenanthridyl complex , 1998 .

[7]  J. Williams,et al.  Luminescent chemosensors for pH, halide and hydroxide ions based onkinetically stable, macrocyclic europium–phenanthridiniumconjugates , 1997 .

[8]  M. Meyerhoff,et al.  Anion selective optical sensing with metalloporphyrin-doped polymeric films , 1993 .

[9]  J. Williams,et al.  Getting excited about lanthanide complexation chemistry , 1996 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Paul R. Selvin,et al.  Luminescence resonance energy transfer , 1994 .

[12]  J. Howard,et al.  Structures of the yttrium complexes of 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid (H4dota) and N,N″-bis(benzylcarbamoylmethyl)diethylenetriamine-N,N′,N″-triacetic acid and the solution structure of a zirconium complex of H4dota , 1994 .

[13]  M. Botta,et al.  Relaxometric and luminescence behaviour of triaquahexaazamacrocyclic complexes, the gadolinium complex displaying a high relaxivity with a pronounced pH dependence , 1998 .

[14]  E. Sveshnikova,et al.  Mechanism of electron excitation energy degradation in solutions , 1973 .

[15]  F. Steemers,et al.  Water-Soluble Neutral Calix[4]arene-Lanthanide Complexes: Synthesis and Luminescence Properties. , 1997, The Journal of organic chemistry.

[16]  Ingo Klimant,et al.  Oxygen-Sensitive Luminescent Materials Based on Silicone-Soluble Ruthenium Diimine Complexes , 1995 .

[17]  A. Beeby,et al.  Photochemical investigations of functionalised 1,4,7,10-tetraazacyclododecane ligands incorporating naphthyl chromophores , 1996 .

[18]  W. Horrocks,et al.  Photosensitized Near Infrared Luminescence of Ytterbium(III) in Proteins and Complexes Occurs via an Internal Redox Process , 1997 .

[19]  J. W. Bunting,et al.  Quaternary Nitrogen Heterocycles. VII. Reactions of some Tricyclic Heteroaromatic Cations in Basic Solutions , 1974 .

[20]  M. Botta,et al.  Extent of hydration of octadentate lanthanide complexes incorporating phosphinate donors: solution relaxometry and luminescence studies , 1996 .

[21]  J. Williams,et al.  Modest effectiveness of carbostyril 124 as a sensitising chromophore in europium and terbium amide complexes based on 1,4,7,10-tetraazacyclododecane , 1996 .

[22]  J. Kropp,et al.  Enhancement of Fluorescence Yield of Rare‐Earth Ions by Heavy Water , 1963 .

[23]  A. Beeby,et al.  Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states , 1999 .

[24]  Massimo Guardigli,et al.  Luminescence of lanthanide cryptates: effects of phosphate and iodide anions , 1992 .

[25]  J. Howard,et al.  Ground and excited state chiroptical properties of enantiopure macrocyclic tetranaphthyl lanthanide complexes: controlled modulation of the frequency and polarisation of emitted light , 1998 .

[26]  E. Würzberg,et al.  Energy gap law in the solvent isotope effect on radiationless transitions of rare earth ions , 1975 .

[27]  J. Williams,et al.  Luminescent sensors for pH, pO2, halide and hydroxide ions using phenanthridine as a photosensitiser in macrocyclic europium and terbium complexes , 1998 .

[28]  M. Botta,et al.  DEPENDENCE OF THE RELAXIVITY AND LUMINESCENCE OF GADOLINIUM AND EUROPIUM AMINO-ACID COMPLEXES ON HYDROGENCARBONATE AND PH , 1999 .

[29]  G. Mathis Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. , 1995, Clinical chemistry.

[30]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[31]  Terence E. Rice,et al.  Proton‐Controlled Switching of Luminescence in Lanthanide Complexes in Aqueous Solution: pH Sensors Based on Long‐Lived Emission , 1996 .

[32]  Andrew Mills,et al.  Fluorescence-based thin plastic film ion-pair sensors for oxygen , 1997 .

[33]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[34]  A. Weller,et al.  Electron-transfer and complex formation in the excited state , 1968 .

[35]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[36]  Massimo Guardigli,et al.  Luminescent lanthanide complexes as photochemical supramolecular devices , 1993 .

[37]  Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules , 1979 .

[38]  R. Grigg,et al.  Luminescent pH sensors based on p-tert-butylcalix[4]arene-linked ruthenium(II) trisbipyridyl complexes , 1994 .

[39]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[40]  David Parker,et al.  Responsive luminescent lanthanide complexes for sensing pH, pO2, and hydrogencarbonate in competitive aqueous media , 1999, Photonics West - Biomedical Optics.

[41]  J. Kropp,et al.  Comment on the Fluorescence of Trivalent Europium in D2O—H2O Mixtures , 1966 .

[42]  T. Gunnlaugsson,et al.  Reversible anion binding in aqueous solution at a cationic heptacoordinate lanthanide centre: selective bicarbonate sensing by time-delayed luminescence , 1998 .

[43]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[44]  J. Howard,et al.  Synthesis, Time‐Resolved Luminescence, NMR Spectroscopy, Circular Dichroism and Circularly Polarised Luminescence Studies of Enantiopure Macrocyclic Lanthanide Tetraamide Complexes , 1999 .

[45]  M. Botta,et al.  Structure and relaxivity of macrocyclic gadolinium complexes incorporating pyridyl and 4-morpholinopyridyl substituents , 1999 .

[46]  M. Port,et al.  Structure and dynamics of all of the stereoisomers of europium complexes of tetra(carboxyethyl) derivatives of dota: ring inversion is decoupled from cooperative arm rotation in the RRRR and RRRS isomers , 1998 .