Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields.

We show that in-plane magnetic-field-assisted spectroscopy allows extraction of the in-plane orientation and full 3D size parameters of the quantum mechanical orbitals of a single electron GaAs lateral quantum dot with subnanometer precision. The method is based on measuring the orbital energies in a magnetic field with various strengths and orientations in the plane of the 2D electron gas. From such data, we deduce the microscopic confinement potential landscape and quantify the degree by which it differs from a harmonic oscillator potential. The spectroscopy is used to validate shape manipulation with gate voltages, agreeing with expectations from the gate layout. Our measurements demonstrate a versatile tool for quantum dots with one dominant axis of strong confinement.

[1]  Spatially resolved manipulation of single electrons in quantum dots using a scanned probe. , 2004, cond-mat/0411264.

[2]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[3]  J. Pekola,et al.  Metallic Coulomb blockade thermometry down to 10 mK and below. , 2011, The Review of scientific instruments.

[4]  F. Stern Transverse Hall Effect in the Electric Quantum Limit , 1968 .

[5]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[6]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[7]  Energy-dependent tunneling in a quantum dot. , 2006, Physical review letters.

[8]  Andrew G. Glen,et al.  APPL , 2001 .

[9]  Hyperfine-mediated transitions between a Zeeman split doublet in GaAs quantum dots: The role of the internal field , 2002, cond-mat/0202237.

[10]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[11]  A. Gossard,et al.  Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot. , 2015, Physical review letters.

[12]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[13]  L. Vandersypen,et al.  Spin-relaxation anisotropy in a GaAs quantum dot. , 2014, Physical review letters.

[14]  A. Gossard,et al.  Silver-epoxy microwave filters and thermalizers for millikelvin experiments , 2014, 1403.6205.

[15]  Ritchie,et al.  Measurements of Coulomb blockade with a noninvasive voltage probe. , 1993, Physical review letters.

[16]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[17]  Liuqi Yu,et al.  Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot , 2017, Nature Communications.

[18]  M.A.Topinka,et al.  Coherent Branched Flow in a Two-Dimensional Electron Gas , 2000, cond-mat/0010348.

[19]  Jr.,et al.  Conductance Fluctuations and partially broken Spin Symmetries in Quantum Dots , 2005, cond-mat/0501622.

[20]  M. Kastner,et al.  Electrical control of spin relaxation in a quantum dot. , 2007, Physical review letters.

[21]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[22]  D. Loss,et al.  Optimal geometry of lateral GaAs and Si/SiGe quantum dots for electrical control of spin qubits , 2016, 1601.05881.

[23]  A. Gossard,et al.  Counting statistics and super-Poissonian noise in a quantum dot: Time-resolved measurements of elect , 2006, cond-mat/0605365.

[24]  D. Loss,et al.  Prospects for Spin-Based Quantum Computing in Quantum Dots , 2012, 1204.5917.

[25]  L. Vandersypen,et al.  Zeeman energy and spin relaxation in a one-electron quantum dot. , 2003, Physical review letters.

[26]  Stopa Quantum dot self-consistent electronic structure and the Coulomb blockade. , 1996, Physical review. B, Condensed matter.

[27]  Gate-defined quantum dot in a strong in-plane magnetic field: spin-orbit and g-factor effects , 2018 .

[28]  M. Manninen,et al.  Electronic structure of quantum dots , 2002 .

[29]  M. Veldhorst,et al.  Spin and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot , 2018, Nature Communications.

[30]  Transient current spectroscopy of a quantum dot in the Coulomb blockade regime , 2000, cond-mat/0010437.

[31]  I. Davies The propagator for a charged particle in a constant magnetic field and with a quadratic potential , 1985 .

[32]  A. Gossard,et al.  GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing , 2014, 1401.2330.

[33]  Daniel Loss,et al.  Phonon-Induced Decay of the Electron Spin in Quantum Dots , 2004 .

[34]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[35]  A. C. Gossard,et al.  Fast Sensing of Double-Dot Charge Arrangement and Spin State with a Radio-Frequency Sensor Quantum Dot , 2010, 1001.3585.

[36]  Hamilton,et al.  Spin filling and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot , 2018 .

[37]  L. Vandersypen,et al.  Excited-state spectroscopy on a nearly closed quantum dot via charge detection , 2003, cond-mat/0312222.

[38]  D. Loss,et al.  Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot , 2018, Physical Review B.

[39]  B. Schuh Algebraic solution of a non-trivial oscillator problem , 1985 .