Hyperspectral Unmixing Based on Mixtures of

This paper introduces a new unsupervised hyper- spectral unmixing method conceived to linear but highly mixed hyperspectral data sets, in which the simplex of minimum volume, usually estimated by the purely geometrically based algorithms, is far way from the true simplex associated with the endmembers. The proposed method, an extension of our previous studies, resorts to the statistical framework. The abundance fraction prior is a mixture of Dirichlet densities, thus automatically enforcing the constraints on the abundance fractions imposed by the acquisition process, namely, nonnegativity and sum-to-one. A cyclic minimiza- tion algorithm is developed where the following are observed: 1) The number of Dirichlet modes is inferred based on the min- imum description length principle; 2) a generalized expectation maximization algorithm is derived to infer the model parameters; and 3) a sequence of augmented Lagrangian-based optimizations is used to compute the signatures of the endmembers. Experiments on simulated and real data are presented to show the effectiveness of the proposed algorithm in unmixing problems beyond the reach of the geometrically based state-of-the-art competitors. Index Terms—Augmented Lagrangian method of multipliers, blind hyperspectral unmixing, dependent components, gener- alized expectation maximization (GEM), minimum description length (MDL), mixtures of Dirichlet densities.

[1]  Lucas C. Parra,et al.  Recovery of constituent spectra using non-negative matrix factorization , 2003, SPIE Optics + Photonics.

[2]  Chong-Yung Chi,et al.  Chance-Constrained Robust Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[3]  John P. Kerekes,et al.  Algorithm taxonomy for hyperspectral unmixing , 2000, SPIE Defense + Commercial Sensing.

[4]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[5]  Jan Larsen,et al.  Bayesian nonnegative Matrix Factorization with volume prior for unmixing of hyperspectral images , 2009, 2009 IEEE International Workshop on Machine Learning for Signal Processing.

[6]  Andreas T. Ernst,et al.  ICE: a statistical approach to identifying endmembers in hyperspectral images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[7]  José M. Bioucas-Dias,et al.  Does independent component analysis play a role in unmixing hyperspectral data? , 2005, IEEE Trans. Geosci. Remote. Sens..

[8]  José M. Bioucas-Dias,et al.  Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[9]  José M. Bioucas-Dias,et al.  Hyperspectral unmixing algorithm via dependent component analysis , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[10]  Jean-Yves Tourneret,et al.  Enhancing Hyperspectral Image Unmixing With Spatial Correlations , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[12]  Antonio Plaza,et al.  Hyperspectral unmixing: geometrical, statistical, and sparse regression-based approaches , 2010, Remote Sensing.

[13]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[15]  S. J. Sutley,et al.  Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada , 1992 .

[16]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[17]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[18]  Maurice D. Craig,et al.  Minimum-volume transforms for remotely sensed data , 1994, IEEE Trans. Geosci. Remote. Sens..

[19]  T. Minka Estimating a Dirichlet distribution , 2012 .

[20]  Chong-Yung Chi,et al.  A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[21]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[22]  I. Renhorn,et al.  Military applications of hyperspectral imagery , 2006, SPIE Defense + Commercial Sensing.

[23]  Jean-Yves Tourneret,et al.  Nonlinear unmixing of hyperspectral images using a generalized bilinear model , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[24]  Nirmal Keshava,et al.  A Survey of Spectral Unmixing Algorithms , 2003 .

[25]  Paul D. Gader,et al.  Sparsity Promoting Iterated Constrained Endmember Detection in Hyperspectral Imagery , 2007, IEEE Geoscience and Remote Sensing Letters.

[26]  Chein-I Chang,et al.  Semi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery , 2008, IEEE Transactions on Signal Processing.

[27]  R. Singer,et al.  Mars - Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance , 1979 .

[28]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[29]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[30]  Gary A. Shaw,et al.  Hyperspectral subpixel target detection using the linear mixing model , 2001, IEEE Trans. Geosci. Remote. Sens..

[31]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Jeff J. Settle,et al.  On the relationship between spectral unmixing and subspace projection , 1996, IEEE Trans. Geosci. Remote. Sens..

[33]  Jean-Claude Wolff,et al.  Determination of the composition of counterfeit Heptodin tablets by near infrared chemical imaging and classical least squares estimation. , 2009, Analytica chimica acta.

[34]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[36]  Chein-I. Chang Hyperspectral Data Exploitation: Theory and Applications , 2007 .

[37]  Antonio J. Plaza,et al.  Spatial/spectral endmember extraction by multidimensional morphological operations , 2002, IEEE Trans. Geosci. Remote. Sens..

[38]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[39]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[40]  Chong-Yung Chi,et al.  A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing , 2009, IEEE Trans. Signal Process..

[41]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[42]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[43]  V. P. Pauca,et al.  Nonnegative matrix factorization for spectral data analysis , 2006 .

[44]  Jean-Yves Tourneret,et al.  Bayesian separation of spectral sources under non-negativity and full additivity constraints , 2009, Signal Process..

[45]  José M. Bioucas-Dias,et al.  A variable splitting augmented Lagrangian approach to linear spectral unmixing , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[46]  José M. Bioucas-Dias,et al.  Learning dependent sources using mixtures of Dirichlet: Applications on hyperspectral unmixing , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[47]  R. Clark,et al.  The U. S. Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0um) , 1993 .

[48]  Larry Wasserman,et al.  All of Statistics: A Concise Course in Statistical Inference , 2004 .

[49]  Kurt C. Lawrence,et al.  Performance of hyperspectral imaging system for poultry surface fecal contaminant detection. , 2006 .

[50]  Seung-Jean Kim,et al.  Hyperspectral Image Unmixing via Alternating Projected Subgradients , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[51]  Paul D. Gader,et al.  PCE: Piecewise Convex Endmember Detection , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Sen Jia,et al.  Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[53]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[54]  E. Oja,et al.  Independent Component Analysis , 2001 .

[55]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[56]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[57]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[58]  Alfred O. Hero,et al.  Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery , 2009, IEEE Transactions on Signal Processing.