An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations

A Galerkin scheme is presented for a class of conservative nonlinear dispersive equations, such as the Camassa-Holm equation and the regularized long wave equation. The scheme has two advantageous features: first, it is conservative in that it keeps the discrete analogue of the continuous energy conservation property in the original equations; second, it can be formulated only with cheap H^1-elements even if the original equations include third derivative u"x"x"x. Numerical experiments confirm the stability and effectiveness of the proposed scheme.

[1]  W. Strauss,et al.  Stability of peakons , 2000 .

[2]  Z. Yin On the blow-up of solutions of a periodic nonlinear dispersive wave equation in compressible elastic rods , 2003 .

[3]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  H. Kalisch,et al.  Numerical study of traveling-wave solutions for the Camassa-Holm equation , 2005 .

[5]  W. Strauss,et al.  Stability of a class of solitary waves in compressible elastic rods , 2000 .

[6]  J. C. Eilbeck,et al.  Numerical study of the regularized long-wave equation I: Numerical methods , 1975 .

[7]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[8]  H. Dai,et al.  Solitary shock waves and other travelling waves in a general compressible hyperelastic rod , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  G. R. McGuire,et al.  Numerical Study of the Regularized Long-Wave Equation. II: Interaction of Solitary Waves , 1977 .

[10]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[11]  Ling Guo,et al.  H1-Galerkin Mixed Finite Element Method for the Regularized Long Wave Equation , 2006, Computing.

[12]  Xavier Raynaud,et al.  Convergence of a Finite Difference Scheme for the Camassa-Holm Equation , 2006, SIAM J. Numer. Anal..

[13]  J. Escher,et al.  Global existence and blow-up for a shallow water equation , 1998 .

[14]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[15]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[16]  Uri M. Ascher,et al.  On Symplectic and Multisymplectic Schemes for the KdV Equation , 2005, J. Sci. Comput..

[17]  Xavier Raynaud,et al.  A convergent numerical scheme for the Camassa--Holm equation based on multipeakons , 2005 .

[18]  Kenneth H. Karlsen,et al.  Global Weak Solutions to a Generalized Hyperelastic-rod Wave Equation , 2005, SIAM J. Math. Anal..

[19]  D. Furihata,et al.  Dissipative or Conservative Finite Difference Schemes for Complex-Valued Nonlinear Partial Different , 2001 .

[20]  Robert Artebrant,et al.  Numerical simulation of Camassa-Holm peakons by adaptive upwinding , 2006 .

[21]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[22]  Takayasu Matsuo Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations , 2008 .

[23]  H. Dai Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod , 1998 .

[24]  Yan Xu,et al.  A Local Discontinuous Galerkin Method for the Camassa-Holm Equation , 2008, SIAM J. Numer. Anal..

[25]  D. Furihata,et al.  Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .

[26]  Brynjulf Owren,et al.  Multi-symplectic integration of the Camassa-Holm equation , 2008, J. Comput. Phys..

[27]  A. Constantin,et al.  Global Weak Solutions for a Shallow Water Equation , 2000 .