An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations
暂无分享,去创建一个
[1] W. Strauss,et al. Stability of peakons , 2000 .
[2] Z. Yin. On the blow-up of solutions of a periodic nonlinear dispersive wave equation in compressible elastic rods , 2003 .
[3] J. Bona,et al. Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[4] H. Kalisch,et al. Numerical study of traveling-wave solutions for the Camassa-Holm equation , 2005 .
[5] W. Strauss,et al. Stability of a class of solitary waves in compressible elastic rods , 2000 .
[6] J. C. Eilbeck,et al. Numerical study of the regularized long-wave equation I: Numerical methods , 1975 .
[7] Darryl D. Holm,et al. An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.
[8] H. Dai,et al. Solitary shock waves and other travelling waves in a general compressible hyperelastic rod , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[9] G. R. McGuire,et al. Numerical Study of the Regularized Long-Wave Equation. II: Interaction of Solitary Waves , 1977 .
[10] Ernst Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[11] Ling Guo,et al. H1-Galerkin Mixed Finite Element Method for the Regularized Long Wave Equation , 2006, Computing.
[12] Xavier Raynaud,et al. Convergence of a Finite Difference Scheme for the Camassa-Holm Equation , 2006, SIAM J. Numer. Anal..
[13] J. Escher,et al. Global existence and blow-up for a shallow water equation , 1998 .
[14] Darryl D. Holm,et al. A New Integrable Shallow Water Equation , 1994 .
[15] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[16] Uri M. Ascher,et al. On Symplectic and Multisymplectic Schemes for the KdV Equation , 2005, J. Sci. Comput..
[17] Xavier Raynaud,et al. A convergent numerical scheme for the Camassa--Holm equation based on multipeakons , 2005 .
[18] Kenneth H. Karlsen,et al. Global Weak Solutions to a Generalized Hyperelastic-rod Wave Equation , 2005, SIAM J. Math. Anal..
[19] D. Furihata,et al. Dissipative or Conservative Finite Difference Schemes for Complex-Valued Nonlinear Partial Different , 2001 .
[20] Robert Artebrant,et al. Numerical simulation of Camassa-Holm peakons by adaptive upwinding , 2006 .
[21] Athanassios S. Fokas,et al. Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .
[22] Takayasu Matsuo. Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations , 2008 .
[23] H. Dai. Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod , 1998 .
[24] Yan Xu,et al. A Local Discontinuous Galerkin Method for the Camassa-Holm Equation , 2008, SIAM J. Numer. Anal..
[25] D. Furihata,et al. Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .
[26] Brynjulf Owren,et al. Multi-symplectic integration of the Camassa-Holm equation , 2008, J. Comput. Phys..
[27] A. Constantin,et al. Global Weak Solutions for a Shallow Water Equation , 2000 .