Limit theorems for sequences of random trees

Abstract We consider a random tree and introduce a metric in the space of trees to define the “mean tree” as the tree minimizing the average distance to the random tree. When the resulting metric space is compact we have laws of large numbers and central limit theorems for sequence of independent identically distributed random trees. As application we propose tests to check if two samples of random trees have the same law.

[1]  C. J-F,et al.  THE COALESCENT , 1980 .

[2]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[3]  Ricardo Fraiman,et al.  Testing statistical hypothesis on random trees , 2006 .

[4]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[5]  J. Neveu,et al.  Arbres et processus de Galton-Watson , 1986 .

[6]  Harald Sverdrup-Thygeson Strong Law of Large Numbers for Measures of Central Tendency and Dispersion of Random Variables in Compact Metric Spaces , 1981 .

[7]  Gabriel Valiente,et al.  An efficient bottom-up distance between trees , 2001, Proceedings Eighth Symposium on String Processing and Information Retrieval.

[8]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[9]  A. G. Flesia,et al.  ST ] 1 5 M ay 2 00 7 Testing statistical hypothesis on Random Trees , 2006 .

[10]  J. Haldane Note on the median of a multivariate distribution , 1948 .

[11]  G. Ducharme,et al.  Uniqueness of the spatial median , 1987 .

[12]  M. Furukawa,et al.  The multiplicative process in semiconductor radiation detectors. A practical application of Good's theorem in the theory of branching processes , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Théoràme ergodique ponctuel et lois fortes des grands nombres pour des points aléatoires d'un espace métrique à courbure négative , 1997 .

[14]  Es-Sahib Aziz,et al.  Barycentre canonique pour un espace métrique à courbure négative , 1999 .

[15]  T. Liggett Interacting Particle Systems , 1985 .

[16]  E. Mourier Éléments aléatoires dans un espace de Banach , 1953 .