Targeting the vital non-structural proteins (NSP12, NSP7, NSP8 and NSP3) from SARS-CoV-2 and inhibition of RNA polymerase by natural bioactive compound naringenin as a promising drug candidate against COVID-19

[1]  P. Ruzza,et al.  Antamanide Analogs as Potential Inhibitors of Tyrosinase , 2022, International journal of molecular sciences.

[2]  Tejas M. Dhameliya,et al.  In search of SARS CoV-2 replication inhibitors: Virtual screening, molecular dynamics simulations and ADMET analysis , 2021, Journal of Molecular Structure.

[3]  Zekeriya Duzgun,et al.  In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase , 2021, Molecular Diversity.

[4]  Zekeriya Duzgun,et al.  In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase , 2021, Molecular diversity.

[5]  J. Faghri,et al.  Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods , 2021, Scientific Reports.

[6]  M. A. Gayosso-Morales,et al.  Docking study for Protein Nsp-12 of SARS-CoV with Betalains and Alfa-Bisabolol , 2020, 2012.14504.

[7]  S. Kumari,et al.  Structural insights into SARS-CoV-2 proteins , 2020, Journal of Molecular Biology.

[8]  H. Charoute,et al.  Potential inhibitors of SARS-cov-2 RNA dependent RNA polymerase protein: molecular docking, molecular dynamics simulations and MM-PBSA analyses , 2020, Journal of biomolecular structure & dynamics.

[9]  H. Harapan,et al.  Remdesivir and its antiviral activity against COVID-19: A systematic review , 2020, Clinical Epidemiology and Global Health.

[10]  A. Hasanpour-Dehkordi,et al.  Clinical Manifestation and the Risk of Exposure to SARS-CoV-2 (COVID-19) , 2020, International journal of preventive medicine.

[11]  R. Zhou,et al.  Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase , 2020, The journal of physical chemistry. B.

[12]  L. Guddat,et al.  Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase , 2020, Cell.

[13]  R. Berisio,et al.  A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping , 2020, Cells.

[14]  Joy Y. Feng,et al.  Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency , 2020, The Journal of Biological Chemistry.

[15]  T. Jodlowski,et al.  Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. , 2020, JAMA.

[16]  Yan Zhang,et al.  Structural Basis for the Inhibition of the RNA-Dependent RNA Polymerase from SARS-CoV-2 by Remdesivir , 2020, bioRxiv.

[17]  A. Kalil Treating COVID-19-Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics. , 2020, JAMA.

[18]  Jianjun Gao,et al.  Discovering drugs to treat coronavirus disease 2019 (COVID-19). , 2020, Drug discoveries & therapeutics.

[19]  K. Wanat Biological barriers, and the influence of protein binding on the passage of drugs across them , 2020, Molecular Biology Reports.

[20]  A. M. Leontovich,et al.  The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 , 2020, Nature Microbiology.

[21]  Chao Liu,et al.  Potential Inhibitors Targeting RNA-Dependent RNA Polymerase Activity (NSP12) of SARS-CoV-2 , 2020 .

[22]  Wei Liu,et al.  Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China , 2020, medRxiv.

[23]  Guangdi Li,et al.  Therapeutic options for the 2019 novel coronavirus (2019-nCoV) , 2020, Nature Reviews Drug Discovery.

[24]  A. Rodríguez-Morales,et al.  Going global – Travel and the 2019 novel coronavirus , 2020, Travel Medicine and Infectious Disease.

[25]  P. Niu,et al.  Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China , 2020, Cell Host & Microbe.

[26]  W. Liu,et al.  Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019‐nCoV , 2020, Chembiochem : a European journal of chemical biology.

[27]  Hongzhou Lu,et al.  Drug treatment options for the 2019-new coronavirus (2019-nCoV). , 2020, Bioscience trends.

[28]  L. O. Bortot,et al.  The citrus flavonoid naringenin impairs the in vitro infection of human cells by Zika virus , 2019, Scientific Reports.

[29]  Asad U. Khan,et al.  The role of conserved residues in the catalytic activity of NDM-1: an approach involving site directed mutagenesis and molecular dynamics. , 2019, Physical chemistry chemical physics : PCCP.

[30]  F. Greenway,et al.  Safety and pharmacokinetics of naringenin: A randomized, controlled, single‐ascending‐dose clinical trial , 2019, Diabetes, obesity & metabolism.

[31]  Joy Y. Feng,et al.  Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir , 2019, Viruses.

[32]  A. Ward,et al.  Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors , 2019, bioRxiv.

[33]  B. Salehi,et al.  The Therapeutic Potential of Naringenin: A Review of Clinical Trials , 2019, Pharmaceuticals.

[34]  P. Muriel,et al.  Beneficial effects of naringenin in liver diseases: Molecular mechanisms , 2018, World journal of gastroenterology.

[35]  A. Sureda,et al.  Naringenin and its Nano-formulations for Fatty Liver: Cellular Modes of Action and Clinical Perspective. , 2018, Current pharmaceutical biotechnology.

[36]  Olivier Michielin,et al.  SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules , 2017, Scientific Reports.

[37]  E. Snijder,et al.  Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes , 2017, Virus Research.

[38]  Lu Lu,et al.  MERS-CoV spike protein: a key target for antivirals , 2017, Expert opinion on therapeutic targets.

[39]  M. Vignuzzi,et al.  Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens , 2016, Journal of Virology.

[40]  William A. Lee,et al.  Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys , 2016, Nature.

[41]  P. Zahradka,et al.  Efficacy of flavonoids in the management of high blood pressure. , 2015, Nutrition reviews.

[42]  Mark T D Cronin,et al.  Investigation of the Verhaar scheme for predicting acute aquatic toxicity: improving predictions obtained from Toxtree ver. 2.6. , 2015, Chemosphere.

[43]  Michael Wink,et al.  Modes of Action of Herbal Medicines and Plant Secondary Metabolites , 2015, Medicines.

[44]  Susanna K. P. Lau,et al.  Middle East Respiratory Syndrome Coronavirus: Another Zoonotic Betacoronavirus Causing SARS-Like Disease , 2015, Clinical Microbiology Reviews.

[45]  Fang Li,et al.  Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies , 2014, Journal of Virology.

[46]  E. Decroly,et al.  One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities , 2014, Proceedings of the National Academy of Sciences.

[47]  C. Dallas,et al.  Clinical Study to Assess the Efficacy and Safety of a Citrus Polyphenolic Extract of Red Orange, Grapefruit, and Orange (Sinetrol‐XPur) on Weight Management and Metabolic Parameters in Healthy Overweight Individuals , 2014, Phytotherapy research : PTR.

[48]  A. Pandey,et al.  Chemistry and Biological Activities of Flavonoids: An Overview , 2013, TheScientificWorldJournal.

[49]  J. Choi,et al.  Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates , 2012, Archives of Virology.

[50]  Eric J. Snijder,et al.  The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension , 2011, Nucleic acids research.

[51]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[52]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[53]  S. Perlman,et al.  Coronaviruses post-SARS: update on replication and pathogenesis , 2009, Nature Reviews Microbiology.

[54]  Shibo Jiang,et al.  The spike protein of SARS-CoV — a target for vaccine and therapeutic development , 2009, Nature Reviews Microbiology.

[55]  Raymond T Chung,et al.  Apolipoprotein B–dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin , 2008, Hepatology.

[56]  M. Gale,et al.  Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins , 2007, Proceedings of the National Academy of Sciences.

[57]  J. Kuhn,et al.  Animal Origins of the Severe Acute Respiratory Syndrome Coronavirus: Insight from ACE2-S-Protein Interactions , 2006, Journal of Virology.

[58]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[59]  Zihe Rao,et al.  Insights into SARS-CoV transcription and replication from the structure of the nsp7–nsp8 hexadecamer , 2005, Nature Structural &Molecular Biology.

[60]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[61]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[62]  John Hodgson,et al.  ADMET—turning chemicals into drugs , 2001, Nature Biotechnology.

[63]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[64]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[65]  M. Shehata,et al.  Inhibition of the SARS-CoV-2 RNA-Dependent RNA polymerase by natural bioactive compounds: Molecular docking analysis , 2021 .

[66]  M. Bahmani,et al.  Antioxidant activity, total phenolic and flavonoid content, and antibacterial effects of Stachys lavandulifolia Vahl. Flowering shoots gathered from Isfahan , 2016 .

[67]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.