Bayesian uncertainty quantification and propagation for validation of a microstructure sensitive model for prediction of fatigue crack initiation

A microstructure and deformation mechanism based fatigue crack initiation and life prediction model, which links microstructure variability of a polycrystalline material to the scatter in fatigue life, is validated using an uncertainty quantification and propagation framework. First, global sensitivity analysis (GSA) is used to identify the set of most influential parameters in the fatigue life prediction model. Following GSA, the posterior distributions of all influential parameters are calculated using a Bayesian inference framework, which is built based on a Markov chain Monte Carlo (MCMC) algorithm. The quantified uncertainties thus obtained, are propagated through the model using Monte Carlo sampling technique to make robust predictions of fatigue life. The model is validated by comparing the predictions to experimental fatigue life data.

[1]  Huseyin Sehitoglu,et al.  Energy barriers associated with slip–twin interactions , 2011 .

[2]  Elmar Plischke,et al.  An adaptive correlation ratio method using the cumulative sum of the reordered output , 2012, Reliab. Eng. Syst. Saf..

[3]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[4]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[5]  K. Differt,et al.  A model of extrusions and intrusions in fatigued metals. II: Surface roughening by random irreversible slip , 1986 .

[6]  Huseyin Sehitoglu,et al.  A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals , 2011 .

[7]  Jitesh H. Panchal,et al.  Key computational modeling issues in Integrated Computational Materials Engineering , 2013, Comput. Aided Des..

[8]  Ricardo A. Lebensohn,et al.  Influence of microstructure variability on short crack behavior through postulated micromechanical short crack driving force metrics , 2015 .

[9]  H. Mughrabi,et al.  Fatigue, an everlasting materials problem - still en vogue , 2010 .

[10]  J. Beck,et al.  Predicting fatigue damage in composites: A Bayesian framework , 2014 .

[11]  Howard Stone,et al.  A modelling approach to yield strength optimisation in a nickel-base superalloy , 2014 .

[12]  Andrew Makeev,et al.  A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models , 2007 .

[13]  K. Goebel,et al.  Bayesian model selection and parameter estimation for fatigue damage progression models in composites , 2015 .

[14]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[15]  Kumar Vemaganti,et al.  A Bayesian approach to selecting hyperelastic constitutive models of soft tissue , 2015 .

[16]  Sankaran Mahadevan,et al.  Model uncertainty and Bayesian updating in reliability-based inspection , 2000 .

[17]  Mark Hardy,et al.  Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation , 2016 .

[18]  Andrew Makeev,et al.  Simultaneous uncertainty quantification of fracture mechanics based life prediction model parameters , 2007 .

[19]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[20]  Costas Papadimitriou,et al.  Bayesian uncertainty quantification and propagation for discrete element simulations of granular materials , 2014 .

[21]  Toshio Mura,et al.  A Dislocation Model for Fatigue Crack Initiation , 1981 .

[22]  Eugenijus Uspuras,et al.  Sensitivity analysis using contribution to sample variance plot: Application to a water hammer model , 2012, Reliab. Eng. Syst. Saf..

[23]  T. Aven,et al.  Probability and Possibility‐Based Representations of Uncertainty in Fault Tree Analysis , 2013, Risk analysis : an official publication of the Society for Risk Analysis.

[24]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[25]  E. Conlon,et al.  parallelMCMCcombine: An R Package for Bayesian Methods for Big Data and Analytics , 2014, PloS one.

[26]  Mark Hardy,et al.  Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy , 2015 .

[27]  Costas Papadimitriou,et al.  Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. , 2012, The Journal of chemical physics.

[28]  D. Fullwood,et al.  Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics , 2010 .

[29]  S. Manson Behavior of materials under conditions of thermal stress , 1953 .

[30]  Jaroslav Polák,et al.  Inhomogeneous dislocation structure in fatigued INCONEL 713 LC superalloy at room and elevated temperatures , 2005 .

[31]  Fionn P.E. Dunne,et al.  On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction , 2015 .

[32]  Li Li,et al.  Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading , 2008 .

[33]  Alejandro Strachan,et al.  Uncertainty propagation in a multiscale model of nanocrystalline plasticity , 2011, Reliab. Eng. Syst. Saf..

[34]  Sankaran Mahadevan,et al.  Uncertainty quantification and model validation of fatigue crack growth prediction , 2011 .

[35]  Chong Wang,et al.  Asymptotically Exact, Embarrassingly Parallel MCMC , 2013, UAI.

[36]  Huseyin Sehitoglu,et al.  Energetics of residual dislocations associated with slip-twin and slip-GBs interactions , 2012 .

[37]  Huseyin Sehitoglu,et al.  The role of grain boundaries on fatigue crack initiation - An energy approach , 2011 .

[38]  John Lambros,et al.  Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X , 2012 .

[39]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[40]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[41]  M. Risbet,et al.  Use of atomic force microscopy to quantify slip irreversibility in a nickel-base superalloy , 2003 .

[42]  M. Risbet,et al.  On the unified view of the contribution of plastic strain to cyclic crack initiation: Impact of the progressive transformation of shear bands to persistent slip bands , 2015 .

[43]  Enrico Zio,et al.  Some considerations on the treatment of uncertainties in risk assessment for practical decision making , 2011, Reliab. Eng. Syst. Saf..

[44]  H. Mughrabi,et al.  Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis , 2013 .

[45]  Stefano Tarantola,et al.  Contribution to the sample mean plot for graphical and numerical sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[46]  Paul D. Arendt,et al.  Quantification of model uncertainty: Calibration, model discrepancy, and identifiability , 2012 .

[47]  Sai Hung Cheung,et al.  Bayesian uncertainty analysis with applications to turbulence modeling , 2011, Reliab. Eng. Syst. Saf..

[48]  A. N. Stroh A theory of the fracture of metals , 1957 .

[49]  Paul Van Houtte,et al.  The stress field of an array of parallel dislocation pile-ups: Implications for grain boundary hardening and excess dislocation distributions , 2010 .

[50]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[51]  Liguo Zhao,et al.  Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys , 2012 .