Quantum microscopy with van der Waals heterostructures

[1]  Mohammed Alghamdi,et al.  Wide field imaging of van der Waals ferromagnet Fe3GeTe2 by spin defects in hexagonal boron nitride , 2021, Nature Communications.

[2]  H. Sirringhaus,et al.  Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride , 2021, Nature Communications.

[3]  J. Wrachtrup,et al.  Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets , 2021, Science.

[4]  D. Keays,et al.  Quantum magnetic imaging of iron organelles within the pigeon cochlea , 2021, Proceedings of the National Academy of Sciences.

[5]  T. Smart,et al.  Computational design of quantum defects in two-dimensional materials , 2021, Nature Computational Science.

[6]  J. Tetienne,et al.  Widefield quantum microscopy with nitrogen-vacancy centers in diamond: Strengths, limitations, and prospects , 2021, Journal of Applied Physics.

[7]  I. Aharonovich,et al.  Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors , 2021, Nature Communications.

[8]  P. Upadhyaya,et al.  High-Contrast Plasmonic-Enhanced Shallow Spin Defects in Hexagonal Boron Nitride for Quantum Sensing. , 2021, Nano letters.

[9]  F. J. Heremans,et al.  Quantum guidelines for solid-state spin defects , 2021, Nature Reviews Materials.

[10]  I. Aharonovich,et al.  Sub-nanoscale Temperature, Magnetic Field and Pressure sensing with Spin Centers in 2D hexagonal Boron Nitride , 2021, 2102.10890.

[11]  Chuan-Feng Li,et al.  Temperature-Dependent Energy-Level Shifts of Spin Defects in Hexagonal Boron Nitride , 2021, ACS Photonics.

[12]  I. Aharonovich,et al.  Room temperature coherent control of spin defects in hexagonal boron nitride , 2020, Science Advances.

[13]  J. Wrachtrup,et al.  Single-spin resonance in a van der Waals embedded paramagnetic defect , 2019, Nature Materials.

[14]  Johannes E. Fröch,et al.  Generation of Spin Defects in Hexagonal Boron Nitride , 2020 .

[15]  A. Locatelli,et al.  In-plane magnetic domains and Néel-like domain walls in thin flakes of the room temperature CrTe2 van der Waals ferromagnet. , 2020, ACS applied materials & interfaces.

[16]  L. Hollenberg,et al.  Improved Current Density and Magnetization Reconstruction Through Vector Magnetic Field Measurements , 2020, Physical Review Applied.

[17]  L. Hollenberg,et al.  Imaging Domain Reversal in an Ultrathin Van der Waals Ferromagnet , 2020, Advanced materials.

[18]  Chien-Chih Tseng,et al.  Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111) , 2020, Nature.

[19]  A. Yacoby,et al.  Imaging viscous flow of the Dirac fluid in graphene , 2019, Nature.

[20]  G. Guo,et al.  Superresolution Multifunctional Sensing with the Nitrogen-Vacancy Center in Diamond , 2019, Physical Review Applied.

[21]  K. Fu,et al.  Quantum defects by design , 2019, Nanophotonics.

[22]  M. Hersam,et al.  2D materials for quantum information science , 2019, Nature Reviews Materials.

[23]  Igor Aharonovich,et al.  Room Temperature Initialisation and Readout of Intrinsic Spin Defects in a Van der Waals Crystal , 2019 .

[24]  M. Markham,et al.  Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor , 2019, Nature.

[25]  A. Morpurgo,et al.  Probing magnetism in 2D materials at the nanoscale with single-spin microscopy , 2019, Science.

[26]  Kenji Watanabe,et al.  Wide-Field Spectral Super-Resolution Mapping of Optically Active Defects in Hexagonal Boron Nitride. , 2019, Nano letters.

[27]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[28]  A. Yacoby,et al.  Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond , 2018, 1804.08742.

[29]  Ronald L. Walsworth,et al.  High-resolution magnetic resonance spectroscopy using a solid-state spin sensor , 2017, Nature.

[30]  Joo-Von Kim,et al.  Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer , 2017, Nature.

[31]  L. Hollenberg,et al.  Electron paramagnetic resonance microscopy using spins in diamond under ambient conditions , 2017, Nature Communications.

[32]  Ronald L. Walsworth,et al.  Control and local measurement of the spin chemical potential in a magnetic insulator , 2016, Science.

[33]  David A. Simpson,et al.  Quantum imaging of current flow in graphene , 2016, Science Advances.

[34]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[35]  M. Lukin,et al.  Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit , 2015, Science.

[36]  Aaron T. Kuan,et al.  Solar nebula magnetic fields recorded in the Semarkona meteorite , 2014, Science.

[37]  J. Tetienne,et al.  Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope , 2014, Science.

[38]  R. Schirhagl,et al.  Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. , 2014, Annual review of physical chemistry.

[39]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[40]  M. D. Lukin,et al.  Optical magnetic imaging of living cells , 2013, Nature.

[41]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[42]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[43]  F. Caruso,et al.  Monitoring ion-channel function in real time through quantum decoherence , 2009, Proceedings of the National Academy of Sciences.

[44]  D. D. Awschalom,et al.  Gigahertz Dynamics of a Strongly Driven Single Quantum Spin , 2009, Science.