Homogeneous random measures and a weak order for the excessive measures of a Markov process

Let X = (Xt,PX) be a right Markov process and let m be an excessive measure for X. Associated with the pair (X, m) is a stationary strong Markov process (Yt, Qm) with random times of birth and death, with the same transition function as X, and with m as one dimensional di^stribution. We use (Yt,Qm) to study the cone of excessive measures for X. A "weak order" is defined on this cone: an excessive measure ( is weakly dominated by m if and only if there is a suitable homogeneous random measure tt such that (Yt, Q6) is obtained by "birthing" (Yt, Qm), birth in [t, t + dt] occurring at rate s(dt). Random measures such as s are studied through the use of Palm measures. We also develop aspects of the "general theory of processes" over (Yt,Qm), including the moderate Markov property of (Yt, Qm) when the arrow of time is reversed. Applications to balayage and capacity are suggested.

[1]  D. Revuz,et al.  Mesures associées aux fonctionnelles additives de Markov. II , 1970 .

[2]  K. Chung,et al.  Left continuous moderate Markov processes , 1979 .

[3]  J. Glover,et al.  Markov processes with identical excessive measures , 1983 .

[4]  R. Getoor On the construction of kernels , 1975 .

[5]  Riesz decompositions in Markov process theory , 1984 .

[6]  R. Getoor,et al.  Naturality, standardness, and weak duality for Markov processes , 1984 .

[7]  Kai Lai Chung,et al.  To reverse a Markov process , 1969 .

[8]  Joanna Mitro Dual Markov processes: Construction of a useful auxiliary process , 1979 .

[9]  An application of flows to time shift and time reversal in stochastic processes , 1985 .

[10]  A. Benveniste Processus stationnaires et mesures de Palm du flot spécial sous une fonction , 1975 .

[11]  M. Bartlett,et al.  Markov Processes and Potential Theory , 1972, The Mathematical Gazette.

[12]  Capacity theory without duality , 1986 .

[13]  S. E. Kuznetsov Construction of Markov Processes with Random Times of Birth and Death , 1974 .

[14]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .

[15]  P. Meyer,et al.  Probabilités et potentiel , 1966 .

[16]  B. W. Atkinson,et al.  Applications of Revuz and Palm Type Measures for Additive Functionals in Weak Duality , 1983 .

[17]  R. Getoor,et al.  Additive functionals and entrance laws , 1985 .

[18]  Nicu Boboc,et al.  Order and Convexity in Potential Theory: H-Cones , 1981 .

[19]  J. Azéma,et al.  Théorie générale des processus et retournement du temps , 1973 .

[20]  P. Fitzsimmons,et al.  Excessive measures and Markov processes with random birth and death , 1986 .

[21]  E. Dynkin Markov Systems and Their Additive Functionals , 1977 .

[22]  D. Geman,et al.  Polar sets and Palm measures in the theory of flows , 1975 .

[23]  Une Theorie de la Dualite a Ensemble Polaire Pres II , 1973 .

[24]  J. Glover,et al.  Constructing Markov processes with random times of birth and death , 1986 .

[25]  Nicu Boboc,et al.  Order and convexity in potential theory , 1988 .

[26]  H. Rost The stopping distributions of a Markov process , 1971 .

[27]  T. Jeulin Compactification de Martin d'un processus droit , 1978 .

[28]  M. Brelot Classical potential theory and its probabilistic counterpart , 1986 .

[29]  J. Azéma Quelques applications de la théorie générale des processus. I , 1972 .

[30]  Donald Geman,et al.  Remarks on Palm Measures , 1973 .

[31]  R. Smythe,et al.  The existence of dual processes , 1973 .

[32]  Jean Jacod,et al.  Semimartingales and Markov processes , 1980 .

[33]  Joanna Mitro Dual markov functionals: Applications of a useful auxiliary process , 1979 .

[34]  R. Getoor Measures that are translation invariant in one coordinate , 1986 .

[35]  R. Getoor,et al.  Markov Processes: Ray Processes and Right Processes , 1975 .

[36]  E. B. Dynkin,et al.  Minimal excessive measures and functions , 1980 .

[37]  J. Azéma,et al.  Précisions sur la mesure de Föllmer , 1976 .

[38]  D. C. Heath Skorokhod stopping via potential theory , 1974 .

[39]  J. Doob Classical potential theory and its probabilistic counterpart , 1984 .