Lifetime nutrient dynamics reveal simultaneous capital and income breeding in a parasitoid

Models of host handling decisions and physiologically structured host–parasitoid population dynamics make diverging assumptions, untested as of this writing, about the allocation rules of nutrients to survival and reproduction. Our aim is to develop a data-rich multidimensional dynamical budget of nutrient acquisition and allocation in survival and reproduction in the host-feeding, synovigenic bruchid ectoparasitoid Eupelmus vuilletti (Hymenoptera: Eupelmidae) over the entire lifetime of the animal in order to address the above questions. We quantified sugar, glycogen, protein, and lipid reserves of single females at birth and death and their daily maintenance needs. We recorded each host-feeding and oviposition event over entire lifetimes and quantified the amounts acquired and invested in eggs using microcolorimetric techniques. We then built two nutrient budgets, with and without hosts, encompassing 20 measured biochemical parameters and tested their predictions using time of death. Carbohydrate reserv...

[1]  C. Boggs,et al.  Making eggs from nectar: the role of life history and dietary carbon turnover in butterfly reproductive resource allocation , 2004 .

[2]  K. Hobson,et al.  ARE GREATER SNOW GEESE CAPITAL BREEDERS? NEW EVIDENCE FROM A STABLE‐ISOTOPE MODEL , 2003 .

[3]  Jérôme Casas,et al.  Energy Dynamics in a Parasitoid Foraging in the Wild , 2022 .

[4]  M. Wells,et al.  Proline can be utilized as an energy substrate during flight of Aedes aegypti females. , 2003, Journal of insect physiology.

[5]  D. Nestel,et al.  Lipid, Carbohydrates and Protein Patterns During Metamorphosis of the Mediterranean Fruit Fly, Ceratitis capitata (Diptera: Tephritidae) , 2003 .

[6]  Jérôme Casas,et al.  Mothers reduce egg provisioning with age , 2003 .

[7]  T. Markow,et al.  Effects of starvation and desiccation on energy metabolism in desert and mesic Drosophila. , 2003, Journal of insect physiology.

[8]  A. Zera,et al.  LIFE-HISTORY EVOLUTION AND THE MICROEVOLUTION OF INTERMEDIARY METABOLISM: ACTIVITIES OF LIPID-METABOLIZING ENZYMES IN LIFE-HISTORY MORPHS OF A WING-DIMORPHIC CRICKET , 2003, Evolution; international journal of organic evolution.

[9]  Jérôme Casas,et al.  Lipogenesis in an adult parasitic wasp. , 2003, Journal of insect physiology.

[10]  M. Rose,et al.  Aging, fertility, and immortality , 2003, Experimental Gerontology.

[11]  A. Zera,et al.  Differential lipid biosynthesis underlies a tradeoff between reproduction and flight capability in a wing-polymorphic cricket , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Jérôme Casas,et al.  The physiology of host feeding in parasitic wasps: implications for survival , 2002 .

[13]  C. Wiklund,et al.  Effects of size and nuptial gifts on butterfly reproduction: can females compensate for a smaller size through male-derived nutrients? , 2002, Behavioral Ecology and Sociobiology.

[14]  A. Yashin,et al.  EVOLUTIONARY OPTIMALITY APPLIED TO DROSOPHILA EXPERIMENTS: HYPOTHESIS OF CONSTRAINED REPRODUCTIVE EFFICIENCY , 2002, Evolution; international journal of organic evolution.

[15]  C. Boggs,et al.  Renewable and nonrenewable resources: Amino acid turnover and allocation to reproduction in Lepidoptera , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  L. Harshman,et al.  The Physiology of Life History Trade-Offs in Animals , 2001 .

[17]  Jérôme Casas,et al.  Lifetime allocation of juvenile and adult nutritional resources to egg production in a holometabolous insect , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  J. Harvey,et al.  Life-history strategies in parasitoid wasps: a comparative analysis of ‘ovigeny’ , 2001 .

[19]  Briegel,et al.  Protein catabolism in mosquitoes: ureotely and uricotely in larval and imaginal Aedes aegypti. , 2001, Journal of insect physiology.

[20]  D. Schrag,et al.  Allocation to reproduction in a hawkmoth: a quantitative analysis using stable carbon isotopes. , 2000 .

[21]  M. Mangel,et al.  Egg maturation, egg resorption and the costliness of transient egg limitation in insects , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  Jérôme Casas,et al.  Eggload dynamics and oviposition rate in a wild population of a parasitic wasp. , 2000 .

[23]  Jérôme Casas,et al.  Rate of nutrient allocation to egg production in a parasitic wasp , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  Jérôme Casas,et al.  Incorporating physiology into parasitoid behavioral ecology: the allocation of nutritional resources , 1999, Researches on Population Ecology.

[25]  N. Gauthier,et al.  Could the egg itself be the source of the oviposition deterrent marker in the ectoparasitoid Dinarmus basalis? , 1999, Journal of insect physiology.

[26]  O'Brien Fuel use in flight and its dependence on nectar feeding in the hawkmoth Amphion floridensis. , 1999, The Journal of experimental biology.

[27]  R. Shine,et al.  Capital versus income breeding : an ectothermic perspective , 1998 .

[28]  M. Rose,et al.  Oocyte maturation and ovariole number in lines ofDrosophila melanogasterselected for postponed senescence , 1998 .

[29]  Marc Mangel,et al.  Effects of Time Limitation and Egg Limitation on Lifetime Reproductive Success of a Parasitoid in the Field , 1998, The American Naturalist.

[30]  V. Křivan Dynamical consequences of optimal host feeding on host-parasitoid population dynamics , 1997 .

[31]  J. Rosenheim,et al.  Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus , 1997 .

[32]  R. McGregor Host-feeding and oviposition by parasitoids on hosts of different fitness value: Influences of egg load and encounter rate , 1997, Journal of Insect Behavior.

[33]  K. I. Jönsson,et al.  Capital and income breeding as alternative tactics of resource use in reproduction , 1997 .

[34]  W. Murdoch,et al.  The effect of egg limitation on stability in insect host-parasitoid population models , 1996 .

[35]  T. Collier Adding physiological realism to dynamic state variable models of parasitoid host feeding , 1995, Evolutionary Ecology.

[36]  William W. Murdoch,et al.  Dynamical effects of host-feeding in parasitoids , 1995 .

[37]  T. Collier Host feeding, egg maturation, resorption, and longevity in the parasitoid Aphytis melinus (Hymenoptera: Aphelinidae). , 1995 .

[38]  W. Murdoch,et al.  Egg load and the decision to host feed in the parasitoid Aphytis melinus , 1994 .

[39]  S. Simpson,et al.  Selective Egestion of Lysine by Locusts Fed Nutritionally Unbalanced Foods , 1994 .

[40]  David Raubenheimer,et al.  A multi-level analysis of feeding behaviour: the geometry of nutritional decisions , 1993 .

[41]  H. Godfray,et al.  Host-feeding strategies of parasitoid wasps , 1993, Evolutionary Ecology.

[42]  N. Kidd,et al.  Host-feeding and oviposition by parasitoids in relation to host stage: Consequences for parasitoid-host population dynamics , 1991, Researches on Population Ecology.

[43]  N. Kidd,et al.  Host-feeding and oviposition strategies of parasitoids in relation to host stage , 1991, Researches on Population Ecology.

[44]  M. Mangel Evolution of Host Selection in Parasitoids: Does the State of the Parasitoid Matter? , 1989, The American Naturalist.

[45]  N. Yamamura,et al.  A simple model of host-parasitoid interaction with host-feeding , 1988, Researches on Population Ecology.

[46]  N. Kidd,et al.  HOST‐FEEDING STRATEGIES IN HYMENOPTERAN PARASITOIDS , 1986 .

[47]  J. Wightman Why insect energy budgets do not balance , 1981, Oecologia.

[48]  J. Oppenheimer Reflections on Fifty Years of Publications on the History of General Biology and Special Embryology , 1975, The Quarterly Review of Biology.

[49]  W. J. Bell,et al.  OOSORPTION IN INSECTS , 1975, Biological reviews of the Cambridge Philosophical Society.

[50]  S. Goldhor Ecology , 1964, The Yale Journal of Biology and Medicine.

[51]  E. Charnov,et al.  Multiple resources and the optimal balance between size and number of offspring , 2005, Evolutionary Ecology.

[52]  D. G I R O N,et al.  Lifetime gains of host-feeding in a synovigenic parasitic wasp , 2004 .

[53]  M. Mangel,et al.  Reproductive senescence and dynamic oviposition behaviour in insects , 2004, Evolutionary Ecology.

[54]  William W. Murdoch,et al.  Consumer-resource dynamics , 2003 .

[55]  S. Alonzo State-dependent habitat selection games between predators and prey: the importance of behavioural interactions and expected lifetime reproductive success , 2002 .

[56]  Å. Lindström,et al.  Ornithology: Arctic waders are not capital breeders , 2001, Nature.

[57]  D. Papaj Ovarian dynamics and host use. , 2000, Annual review of entomology.

[58]  C. Clark,et al.  Dynamic State Variable Models in Ecology , 2000 .

[59]  F. Wäckers,et al.  Measuring CO2 respiration rates in the parasitoid Cotesia glomerata. , 2000 .

[60]  R. M. Alexander,et al.  Energy for animal life , 1999 .

[61]  C. Boggs Reproductive allocation from reserves and income in butterfly species with differing adult diets , 1997 .

[62]  C. Boggs DYNAMICS OF REPRODUCTIVE ALLOCATION FROM JUVENILE AND ADULT FEEDING: RADIOTRACER STUDIES , 1997 .

[63]  Calder,et al.  Nutritional homeostasis in locusts: is there a mechanism for increased energy expenditure during carbohydrate overfeeding? , 1997, The Journal of experimental biology.

[64]  M. Loreau,et al.  Individual and population energy budgets of Abax ater (Coleoptera, Carabidae) , 1996 .

[65]  J. Adams,et al.  Behavioral ecology of host feeding in Aphytis parasitoids , 1994 .

[66]  H. Godfray Parasitoids: Behavioral and Evolutionary Ecology , 1993 .

[67]  C. Boggs,et al.  Resource allocation : exploring connections between foraging and life history , 1992 .

[68]  J. McNamara,et al.  The effect of variability on host feeding and reproductive success in parasitoids , 1992 .

[69]  C. M. Lessells,et al.  The Evolution of Life Histories , 1994 .

[70]  A. Mellors,et al.  Animal Nutrition , 1925, Nature.

[71]  S. Simpson,et al.  Integrating nutrition : a geometrical approach , 2022 .