On estimating the curvature attributes and strain invariants of deformed surface through radial basis functions

[1]  H. Mehrabi,et al.  Recursive moving least squares , 2015 .

[2]  H. Matsubara,et al.  Multi-dimensional moving least squares method applied to 3D elasticity problems , 2013 .

[3]  E. D. Skouras,et al.  Meshless point collocation for the numerical solution of Navier–Stokes flow equations inside an evaporating sessile droplet , 2012 .

[4]  Yilmaz Dereli,et al.  Radial basis functions method for numerical solution of the modified equal width equation , 2010, Int. J. Comput. Math..

[5]  Dong-Hoon Choi,et al.  Construction of the radial basis function based on a sequential sampling approach using cross-validation , 2009 .

[6]  G. Caumon,et al.  Surface-Based 3D Modeling of Geological Structures , 2009 .

[7]  Mark Pauly,et al.  Curvature‐Domain Shape Processing , 2008, Comput. Graph. Forum.

[8]  Petr Vaníček,et al.  Short Note: Strain invariants , 2008 .

[9]  Hongyuan Zha,et al.  Consistent computation of first- and second-order differential quantities for surface meshes , 2008, SPM '08.

[10]  D. Pollard,et al.  Using differential geometry to describe 3-D folds , 2007 .

[11]  K. Marfurt,et al.  Curvature attribute applications to 3D surface seismic data , 2007 .

[12]  Kenneth J. W. McCaffrey,et al.  Numerical analysis of fold curvature using data acquired by high-precision GPS , 2006 .

[13]  Cindy Grimm,et al.  Estimating Curvature on Triangular Meshes , 2006, Int. J. Shape Model..

[14]  Gady Agam,et al.  A sampling framework for accurate curvature estimation in discrete surfaces , 2005, IEEE Transactions on Visualization and Computer Graphics.

[15]  E. Grafarend,et al.  Intrinsic deformation analysis of the Earth's surface based on displacement fields derived from space geodetic measurements. Case studies: present-day deformation patterns of Europe and of the Mediterranean area (ITRF data sets) , 2003 .

[16]  Marc Pouget,et al.  Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..

[17]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[18]  David D. Pollard,et al.  How to calculate normal curvatures of sampled geological surfaces , 2003 .

[19]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[20]  Sylvain Petitjean,et al.  A survey of methods for recovering quadrics in triangle meshes , 2002, CSUR.

[21]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[22]  A. Roberts Curvature attributes and their application to 3D interpreted horizons , 2001 .

[23]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[24]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[25]  Victoria Interrante,et al.  Illustrating surface shape in volume data via principal direction-driven 3D line integral convolution , 1997, SIGGRAPH.

[26]  Richard K. Beatson,et al.  Surface interpolation with radial basis functions for medical imaging , 1997, IEEE Transactions on Medical Imaging.

[27]  Bernd Hamann,et al.  Curvature Approximation for Triangulated Surfaces , 1993, Geometric Modelling.

[28]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[29]  F. G. Peet,et al.  Surface Curvature as a Measure of Image Texture , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Jon Louis Bentley,et al.  Data Structures for Range Searching , 1979, CSUR.

[31]  Saeed Kazem,et al.  PROMETHEE technique to select the best radial basis functions for solving the 2-dimensional heat equations based on Hermite interpolation , 2015 .

[32]  S. Sarra,et al.  Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations , 2009 .

[33]  S. Kabanikhin Definitions and examples of inverse and ill-posed problems , 2008 .

[34]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[35]  T. Belytschko,et al.  Discontinuous Radial Basis Function Approximations for Meshfree Methods , 2005 .

[36]  N Mai Duy,et al.  APPROXIMATION OF FUNCTION AND ITS DERIVATIVES USING RADIAL BASIS FUNCTION NETWORKS , 2003 .

[37]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[38]  Martin D. Buhmann,et al.  A new class of radial basis functions with compact support , 2001, Math. Comput..

[39]  Even Mehlum,et al.  Invariant smoothness measures for surfaces , 1998, Adv. Comput. Math..

[40]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[41]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[42]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[43]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[44]  J. Murray Quantitative fracture study; sanish pool, McKenzie County, North Dakota , 1968 .