On-Line Adaptation of Predictive Controllers

Although predictive control techniques such as Dynamic Matrix Control and Model Algorithmic Control have received much attention in recent years, systematic methods for on-line updating of the process models and predictive control laws rarely have been reported. Such adaptation is desirable if the process conditions change significantly over a period of time. The same approach also could be used to generate a discrete convolution model for the initil controller design. In this paper, several alternative strategies for on-line adaptation during closed-loop operation are evaluated and compared via simulations.

[1]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[2]  D. Seborg,et al.  A linear programming approach for multivariable feedback control with inequality constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[3]  Duncan A. Mellichamp,et al.  A decoupling pole placement self‐tuning controller for a class of multivariable processes , 1986 .

[4]  Sa Chesna,et al.  Extended Horizon Adaptive Control , 1984 .

[5]  C. Fonte,et al.  ADAPTIVE GENERALIZED PREDICTIVE CONTROL WITH MULTIPLE REFERENCE MODEL , 1987 .

[6]  Won-Kyoo Lee,et al.  Extended discrete-time multivariable adaptive control using long-term predictor , 1983 .

[7]  D. Clarke,et al.  A generalized LQG approach to self-tuning control Part I. Aspects of design , 1985 .

[8]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[9]  T. Edgar,et al.  Predictive Control using Constrained Optimal Control , 1986, 1986 American Control Conference.

[10]  Miroslav Kárný,et al.  Tracking of Slowly Varying Parameters by Directional Forgetting , 1984 .

[11]  Richard W. Freedman,et al.  Adaptive Dynamic Matrix Control: Online Evaluation of the DMC Model Coefficients , 1985, 1985 American Control Conference.

[12]  N. L. Ricker Use of quadratic programming for constrained internal model control , 1985 .

[13]  Henk B. Verbruggen,et al.  PREDICTIVE CONTROL USING IMPULSE RESPONSE MODELS , 1980 .

[14]  Thomas F. Edgar,et al.  Adaptive control strategies for process control: A survey , 1986 .

[15]  Michael J. Grimble,et al.  Implicit and explicit LQG self-tuning controllers , 1984, Autom..

[16]  Thomas F. Edgar,et al.  An Approach for Adaptive-Predictive Control , 1985 .

[17]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[18]  Carlos E. Garcia,et al.  Internal model control. A unifying review and some new results , 1982 .

[19]  Edoardo Mosca,et al.  Performance improvements of self-tuning controllers by multistep horizons: The MUSMAR approach , 1984, Autom..

[20]  Babatunde A. Ogunnaike,et al.  A Statistical Appreciation of Dynamic Matrix Control , 1983, 1983 American Control Conference.

[21]  Carlos E. Garcia,et al.  QUADRATIC PROGRAMMING SOLUTION OF DYNAMIC MATRIX CONTROL (QDMC) , 1986 .

[22]  Dale E. Seborg,et al.  Predictive Controller Design for SISO Systems , 1985, 1985 American Control Conference.

[23]  R.M.C. De Keyse,et al.  A Comparative Study of Self-Adaptive Long-Range Predictive Control Methods , 1985 .

[24]  Lin S. Tung Sequential Predictive Control of Industrial Processes , 1983, 1983 American Control Conference.

[25]  Raman K. Mehra,et al.  Model algorithmic control (MAC); basic theoretical properties , 1982, Autom..

[26]  D. Seborg,et al.  Predictive Controller Design by Principal Components Analysis , 1985 .

[27]  Robin De Keyser,et al.  A self-tuning multistep predictor application , 1981, Autom..

[28]  C. R. Cutler,et al.  Optimal Solution of Dynamic Matrix Control with Linear Programing Techniques (LDMC) , 1985, 1985 American Control Conference.

[29]  Won-Kyoo Lee,et al.  Adaptive inferential control for chemical processes , 1985 .

[30]  Václav Peterka,et al.  Predictor-based self-tuning control , 1982, Autom..