Properties and Constructions of Energy-Harvesting Sliding-Window Constrained Codes

We study properties and constructions of constrained binary codes that enable simultaneous energy and information transfer. We specifically study sliding-window constrained codes that guarantee that within any prescribed window of <inline-formula> <tex-math notation="LaTeX">$\ell $ </tex-math></inline-formula> consecutive bits the constrained sequence has at least <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$t>1$ </tex-math></inline-formula>, 1’s. We present a <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula>-state source, <inline-formula> <tex-math notation="LaTeX">$K=\ell $ </tex-math></inline-formula> choose <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>, that models the <inline-formula> <tex-math notation="LaTeX">$(\ell,t)$ </tex-math></inline-formula> sliding-window constraint. We compute the information capacity of sliding-window <inline-formula> <tex-math notation="LaTeX">$(\ell,t)$ </tex-math></inline-formula>-constrained sequences. We design efficient coding techniques for translating source data into sliding-window <inline-formula> <tex-math notation="LaTeX">$(\ell,t)$ </tex-math></inline-formula>-constrained sequences.

[1]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[2]  Kees A. Schouhamer Immink,et al.  Runlength-limited sequences , 1990, Proc. IEEE.

[3]  Leonidas J. Guibas,et al.  String Overlaps, Pattern Matching, and Nontransitive Games , 1981, J. Comb. Theory A.

[4]  Don Coppersmith,et al.  Algorithms for sliding block codes - An application of symbolic dynamics to information theory , 1983, IEEE Trans. Inf. Theory.

[5]  Paul H. Siegel,et al.  Codes for Digital Recorders , 1998, IEEE Trans. Inf. Theory.

[6]  Mehul Motani,et al.  Skip-Sliding Window Codes , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[7]  Mehul Motani,et al.  Subblock-Constrained Codes for Real-Time Simultaneous Energy and Information Transfer , 2015, IEEE Transactions on Information Theory.

[8]  Petar Popovski,et al.  Interactive Joint Transfer of Energy and Information , 2012, IEEE Transactions on Communications.

[9]  Congzhe Cao,et al.  Minimal Sets for Capacity-Approaching Variable-Length Constrained Sequence Codes , 2019, IEEE Transactions on Communications.

[10]  Lav R. Varshney,et al.  On the Outage-Constrained Rate of Skip-Sliding Window Codes , 2019, 2019 IEEE Information Theory Workshop (ITW).

[11]  Mehul Motani,et al.  Are Run-Length Limited Codes Suitable for Simultaneous Energy and Information Transfer? , 2019, IEEE Transactions on Green Communications and Networking.

[12]  Mehul Motani,et al.  Bounds on the Size and Asymptotic Rate of Subblock-Constrained Codes , 2018, IEEE Transactions on Information Theory.

[13]  Congzhe Cao,et al.  Construction of Multi-State Capacity-Approaching Variable-Length Constrained Sequence Codes With State-Independent Decoding , 2019, IEEE Access.

[14]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[15]  Brian H. Marcus,et al.  Finite-State Modulation Codes for Data Storage , 2004 .

[16]  Angela I. Barbero,et al.  Coding for Inductively Coupled Channels , 2012, IEEE Transactions on Information Theory.