Effects of crustal field rotation on the solar wind plasma interaction with Mars

The crustal remnant field on Mars rotates with the planet at a period of 24 h 37 min, constantly varying the magnetic field configuration interacting with the solar wind. Until now, there has been no self-consistent modeling investigation on how this varying magnetic field affects the solar wind plasma interaction. Here we include the rotation of this localized crustal field in a multispecies single-fluid MHD model of Mars and simulate an entire day of solar wind interaction under normal solar wind conditions. The MHD model results are compared with Mars Global Surveyor (MGS) magnetic field observations and show very close agreement, especially for the field strength along almost all of the 12 orbits on the day simulated. Model results also show that the ion escape rates slowly vary with rotation, generally anticorrelating with the strength of subsolar magnetic crustal sources, with some time delay. In addition, it is found that in the intense crustal field regions, the densities of heavy ion components enhance significantly along the MGS orbit, implying strong influence of the crustal field on the ionospheric structures.

[1]  A. Nagy,et al.  Martian ionospheric responses to dynamic pressure enhancements in the solar wind , 2014 .

[2]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[3]  J. Arkani‐Hamed A 50‐degree spherical harmonic model of the magnetic field of Mars , 2001 .

[4]  A. Nagy,et al.  On the effect of the martian crustal magnetic field on atmospheric erosion , 2008 .

[5]  D. Mitchell,et al.  Variability of the altitude of the Martian sheath , 2005 .

[6]  J. Chaufray,et al.  Modeling of Venus, Mars, and Titan , 2011 .

[7]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[8]  Naoki Terada,et al.  A comparison of global models for the solar wind interaction with Mars , 2010 .

[9]  S. Barabash,et al.  On the relation between plasma escape and the Martian crustal magnetic field , 2011 .

[10]  S. Barabash,et al.  Solar cycle effects on the ion escape from Mars , 2013 .

[11]  David Andrew Brain,et al.  Mars Global Surveyor Measurements of the Martian Solar Wind Interaction , 2007 .

[12]  M. Maggi,et al.  Mass composition of the escaping plasma at Mars , 2006 .

[13]  S. Barabash,et al.  Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields , 2011 .

[14]  Ness,et al.  Magnetic lineations in the ancient crust of mars , 1999, Science.

[15]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[16]  D. Mitchell,et al.  A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data , 2003 .

[17]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[18]  Andrew F. Nagy,et al.  Ion escape fluxes from Mars , 2007 .

[19]  Igor V. Sokolov,et al.  Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .

[20]  G. Chanteur,et al.  Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF , 2009 .

[21]  Quentin F. Stout,et al.  Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..

[22]  S. A. Ledvina,et al.  Modeling and Simulating Flowing Plasmas and Related Phenomena , 2008 .