Enhanced grain refinement and mechanical properties of a high–strength Al–Zn–Mg–Cu–Zr alloy induced by TiC nano–particles

[1]  Qianqian Sun,et al.  Influence of a new AlTiC–B master alloy on the casting and extruding behaviors of 7050 alloys , 2020 .

[2]  Q. Gu,et al.  Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system , 2020 .

[3]  Yun-lai Deng,et al.  Influence of strain rate on hot deformation behavior and recrystallization behavior under isothermal compression of Al-Zn-Mg-Cu alloy , 2019, Journal of Alloys and Compounds.

[4]  F. Herbst,et al.  EBSD, XRD and SRS characterization of a casting Al-7wt%Si alloy processed by equal channel angular extrusion: Dislocation density evaluation , 2019, Materials Characterization.

[5]  Xiangfa Liu,et al.  Microstructure evolution and high temperature tensile properties of AlNp/Al–Fe composites induced by microalloying , 2019, Journal of Alloys and Compounds.

[6]  Yuanwei Sun,et al.  Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy , 2019, Journal of Alloys and Compounds.

[7]  Y. Wang,et al.  Mechanism for Zr poisoning of Al-Ti-B based grain refiners , 2019, Acta Materialia.

[8]  Bin Chen,et al.  Experimental and DFT characterization of η′ nano-phase and its interfaces in Al Zn Mg Cu alloys , 2019, Acta Materialia.

[9]  Xiangfa Liu,et al.  Microstructure and mechanical properties at both room and high temperature of in-situ TiC reinforced Al–4.5Cu matrix nanocomposite , 2018, Journal of Alloys and Compounds.

[10]  T. Jin,et al.  Microstructure and mechanical properties of an in-situ TiB2/Al-Zn-Mg-Cu-Zr composite fabricated by Melt-SHS process , 2018 .

[11]  A. Ghosh,et al.  Microstructure and texture development of 7075 alloy during homogenisation , 2018 .

[12]  Guojun Zhang,et al.  The grain refinement performance of B-doped TiC on Zr-containing Al alloys , 2018 .

[13]  Qiang Li,et al.  Mechanical properties and abrasive wear behaviors of in situ nano-TiCx/Al–Zn–Mg–Cu composites fabricated by combustion synthesis and hot press consolidation , 2018 .

[14]  M. Gupta,et al.  Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process , 2017 .

[15]  J. Baldwin,et al.  Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy , 2017 .

[16]  DongEung Kim,et al.  Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications , 2017 .

[17]  A. L. Greer Overview: Application of heterogeneous nucleation in grain-refining of metals. , 2016, The Journal of chemical physics.

[18]  Kai Wen,et al.  Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers , 2016 .

[19]  Ma Qian,et al.  Recent advances in grain refinement of light metals and alloys , 2016 .

[20]  Qudong Wang,et al.  Nanoparticle-inhibited growth of primary aluminum in Al–10Si alloys , 2016 .

[21]  D. Raabe,et al.  Assessment of geometrically necessary dislocation levels derived by 3D EBSD , 2015 .

[22]  M. Ferry,et al.  Remelting-induced anomalous eutectic formation during solidification of deeply undercooled eutectic alloy melts , 2015 .

[23]  Hao-wei Wang,et al.  High cycle fatigue behavior of the in-situ TiB2/7050 composite , 2015 .

[24]  Z. Fan,et al.  Grain refining mechanism in the Al/Al–Ti–B system , 2015 .

[25]  Lianyi Chen,et al.  Rapid control of phase growth by nanoparticles , 2014, Nature Communications.

[26]  Constantinos Soutis,et al.  Recent developments in advanced aircraft aluminium alloys , 2014 .

[27]  C. Bolfarini,et al.  Microstructure and mechanical properties of a spray formed and extruded AA7050 recycled alloy , 2014 .

[28]  S. Shankar,et al.  Controlled Diffusion Solidification (CDS) of Al-Zn-Mg-Cu (7050): Microstructure, heat treatment and mechanical properties , 2014 .

[29]  Julie M. Schoenung,et al.  Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy , 2014 .

[30]  Jung-Chung Hung,et al.  Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting , 2013 .

[31]  M. Alipour,et al.  Effect of the strain-induced melt activation (SIMA) process on the tensile properties of a new developed super high strength aluminum alloy modified by Al5Ti1B grain refiner , 2012 .

[32]  A. Srivastava,et al.  Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering , 2012 .

[33]  Dheerendra Kumar Dwivedi,et al.  Effects of electromagnetic stirring and rare earth compounds on the microstructure and mechanical properties of hypereutectic Al–Si alloys , 2012 .

[34]  Z. Fang,et al.  Microstructural characterization and wear behavior of in situ TiC/7075 composites synthesized by displacement reactions and spray forming , 2011 .

[35]  H. Ding,et al.  Microstructure and grain refining performance of a new Al–Ti–C–B master alloy , 2009 .

[36]  H. Saghafian,et al.  Study on the effect of prolonged mechanical vibration on the grain refinement and density of A356 aluminum alloy , 2009 .

[37]  Y. Birol Grain refining efficiency of Al-Ti-C alloys , 2006 .

[38]  D. Seidman,et al.  Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys , 2005 .

[39]  B. S. Murty,et al.  Development of Al-Ti-C grain refiners and study of their grain refining efficiency on Al and Al-7Si alloy , 2005 .

[40]  H. Prask,et al.  Pure Al matrix composites produced by vacuum hot pressing: tensile properties and strengthening mechanisms , 2004 .

[41]  J. Robson Microstructural evolution in aluminium alloy 7050 during processing , 2004 .

[42]  M. Starink,et al.  A Model for the Yield Strength of Overaged Al-Zn-Mg-Cu Alloys , 2003 .

[43]  J. Robson Optimizing the homogenization of zirconium containing commercial aluminium alloys using a novel process model , 2002 .

[44]  R. Drew,et al.  Wettability of TiC by commercial aluminum alloys , 2002 .

[45]  S. A. Kori,et al.  Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying , 2002 .

[46]  A. L. Greer,et al.  Modelling of inoculation of metallic melts : Application to grain refinement of aluminium by Al-Ti-B , 2000 .

[47]  W. S. Miller,et al.  Recent development in aluminium alloys for the automotive industry , 2000 .

[48]  W. S. Miller,et al.  Recent development in aluminium alloys for aerospace applications , 2000 .

[49]  D. StJohn,et al.  Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—a review of the literature , 1999 .

[50]  M. Kumar,et al.  Competition between nucleation and early growth of ferrite from austenite-studies using cellular automaton simulations , 1998 .

[51]  J. A. Spittle,et al.  The influence of zirconium and chromium on the grain-refining efficiency of Al—Ti—B inoculants , 1995 .

[52]  E. Lavernia,et al.  Processing techniques for particulate-reinforced metal aluminium matrix composites , 1991 .

[53]  C. Chakravorty,et al.  Grain Refining of Aluminium-Lithium Alloy with Al-Ti-B , 1991 .

[54]  J. E. Bailey,et al.  The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver , 1960 .

[55]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[56]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .