Cryogenic-CMOS for Quantum Computing

In the 2010s quantum technologies have emerged as a compelling complement to classical technologies for a number of applications, including quantum sensing, metrology, imaging, communications, security, and computing.

[1]  Chih-Hung Chen,et al.  Fast Evaluation of the High-Frequency Channel Noise in Nanoscale MOSFETs , 2018, IEEE Transactions on Electron Devices.

[2]  H. Lu,et al.  Frequency multiplexing for readout of spin qubits , 2013, 1312.5064.

[3]  Edoardo Charbon,et al.  Deep-Cryogenic Voltage References in 40-nm CMOS , 2018, IEEE Solid-State Circuits Letters.

[4]  L. Vandersypen,et al.  Real-time detection of single-electron tunneling using a quantum point contact , 2004, cond-mat/0407121.

[5]  S. Tarucha,et al.  A>99.9%-fidelity quantum-dot spin qubit with coherence limited by charge noise , 2017, 1708.01454.

[6]  L. Vandersypen,et al.  Spin Lifetime and Charge Noise in Hot Silicon Quantum Dot Qubits. , 2018, Physical review letters.

[7]  Kathleen Philips,et al.  A 1.33 mW, 1.6psrms-Integrated-Jitter, 1.8-2.7 GHz Ring-Oscillator-Based Fractional-N Injection-Locked DPLL for Internet-of-Things Applications , 2018, 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[8]  Torsten Lehmann,et al.  Cryogenic Support Circuits and Systems for Silicon Quantum Computers , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[9]  Lars R. Schreiber,et al.  Semiconductor Spin Qubits — A Scalable Platform for Quantum Computing? , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[10]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[11]  Edoardo Charbon,et al.  Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures , 2019, ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC).

[12]  Robert B. Staszewski,et al.  A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators , 2016, IEEE Journal of Solid-State Circuits.

[13]  Yu Chen,et al.  29.1 A 28nm Bulk-CMOS 4-to-8GHz ¡2mW Cryogenic Pulse Modulator for Scalable Quantum Computing , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[14]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[15]  A. Vladimirescu,et al.  Cryo-CMOS for quantum computing , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[16]  Edoardo Charbon,et al.  A 6.5-GHz Cryogenic All-Pass Filter Circulator in 40-nm CMOS for Quantum Computing Applications , 2019, 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[17]  Fabio Sebastiano,et al.  19.3 A 200dB FoM 4-to-5GHz Cryogenic Oscillator with an Automatic Common-Mode Resonance Calibration for Quantum Computing Applications , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[18]  John D. Cressler,et al.  Extreme Environment Electronics , 2012 .

[19]  M. A. Rol,et al.  Restless Tuneup of High-Fidelity Qubit Gates , 2016, 1611.04815.

[20]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[21]  R. Feynman Simulating physics with computers , 1999 .

[22]  Lieven M. K. Vandersypen,et al.  1.4 Quantum computing - the next challenge in circuit and system design , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[23]  Arnout Beckers,et al.  Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures , 2018, Solid-State Electronics.

[24]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[25]  Christian Grewing,et al.  Systems Engineering of Cryogenic CMOS Electronics for Scalable Quantum Computers , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[26]  Edoardo Charbon,et al.  A reconfigurable cryogenic platform for the classical control of quantum processors. , 2016, The Review of scientific instruments.

[27]  R. N. Schouten,et al.  Cryogenic amplifier for fast real-time detection of single-electron tunneling , 2007, 0708.0461.

[28]  Jun Wang,et al.  Observation of nonconservation characteristics of radio frequency noise mechanism of 40-nm n-MOSFET , 2018 .

[29]  M. Veldhorst,et al.  Voltage References for the Ultra-Wide Temperature Range from 4.2K to 300K in 40-nm CMOS , 2019, ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC).

[30]  J. Cressler,et al.  On the profile design and optimization of epitaxial Si- and SiGe-base bipolar technology for 77 K applications. I. Transistor DC design considerations , 1993 .

[31]  Yuhua Cheng,et al.  Flicker noise characteristics of advanced MOS technologies , 1988, Technical Digest., International Electron Devices Meeting.

[32]  E. Charbon,et al.  Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures , 2018, IEEE Journal of the Electron Devices Society.

[33]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[34]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[35]  Hao Wu,et al.  Implicit Common-Mode Resonance in LC Oscillators , 2017, IEEE Journal of Solid-State Circuits.

[36]  C. K. Andersen,et al.  Rapid High-fidelity Multiplexed Readout of Superconducting Qubits , 2018, Physical Review Applied.

[37]  Edoardo Charbon,et al.  The electronic interface for quantum processors , 2018, Microprocess. Microsystems.

[38]  Alessandro Rossi,et al.  A CMOS dynamic random access architecture for radio-frequency readout of quantum devices , 2018, Nature Electronics.

[39]  K. Itoh,et al.  Operation of a silicon quantum processor unit cell above one kelvin , 2019, Nature.

[40]  Ahmed Elkholy,et al.  A 6.75–8.25-GHz −250-dB FoM Rapid ON/OFF Fractional-N Injection-Locked Clock Multiplier , 2018, IEEE Journal of Solid-State Circuits.

[41]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[42]  J. R. Petta,et al.  Quantum CNOT Gate for Spins in Silicon [1] , 2017 .

[43]  J. Cressler,et al.  Sub-1-K Operation of SiGe Transistors and Circuits , 2009, IEEE Electron Device Letters.

[44]  J. C. Bardin,et al.  Cryogenic small-signal and noise performance of 32nm SOI CMOS , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[45]  Edoardo Charbon,et al.  Benefits and Challenges of Designing Cryogenic CMOS RF Circuits for Quantum Computers , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[46]  A. Abidi,et al.  Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures , 1994 .

[47]  Edoardo Charbon,et al.  Characterization and Model Validation of Mismatch in Nanometer CMOS at Cryogenic Temperatures , 2018, 2018 48th European Solid-State Device Research Conference (ESSDERC).

[48]  Edoardo Charbon,et al.  Cryogenic low-dropout voltage regulators for stable low-temperature electronics , 2018 .

[49]  Koen Bertels,et al.  Quantum Accelerated Computer Architectures , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[50]  T. Lehmann,et al.  Characterization of SOS-CMOS FETs at Low Temperatures for the Design of Integrated Circuits for Quantum Bit Control and Readout , 2010, IEEE Transactions on Electron Devices.

[51]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[52]  Lin Song,et al.  Cryo-CMOS electronic control for scalable quantum computing , 2017, 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).

[53]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[54]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[55]  D. P. DiVincenzo,et al.  Coherent spin manipulation in an exchange-only qubit , 2010, 1005.0273.

[56]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[57]  Edoardo Charbon,et al.  A Cryogenic 1 GSa/s, Soft-Core FPGA ADC for Quantum Computing Applications , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[58]  Kofi A. A. Makinwa,et al.  A 1.2-V 10-μ W NPN-Based Temperature Sensor in 65-nm CMOS With an Inaccuracy of 0.2°C (3 Sigma ) From - 70°C to 125°C , 2010, IEEE J. Solid State Circuits.

[59]  A. Gossard,et al.  Fast single-charge sensing with a rf quantum point contact , 2007, 0707.2946.

[60]  Edoardo Charbon,et al.  Impact of Classical Control Electronics on Qubit Fidelity , 2018, Physical Review Applied.