Detecting fake news stories via multimodal analysis

Filtering, vetting, and verifying digital information is an area of core interest in information science. Online fake news is a specific type of digital misinformation that poses serious threats to democratic institutions, misguides the public, and can lead to radicalization and violence. Hence, fake news detection is an important problem for information science research. While there have been multiple attempts to identify fake news, most of such efforts have focused on a single modality (e.g., only text‐based or only visual features). However, news articles are increasingly framed as multimodal news stories, and hence, in this work, we propose a multimodal approach combining text and visual analysis of online news stories to automatically detect fake news. Drawing on key theories of information processing and presentation, we identify multiple text and visual features that are associated with fake or credible news articles. We then perform a predictive analysis to detect features most strongly associated with fake news. Next, we combine these features in predictive models using multiple machine‐learning techniques. The experimental results indicate that a multimodal approach outperforms single‐modality approaches, allowing for better fake news detection.

[1]  Shrisha Rao,et al.  3HAN: A Deep Neural Network for Fake News Detection , 2017, ICONIP.

[2]  Keneilwe Zuva,et al.  Evaluation of Information Retrieval Systems , 2012 .

[3]  Kate Starbird,et al.  Could This Be True?: I Think So! Expressed Uncertainty in Online Rumoring , 2016, CHI.

[4]  Eugenio Tacchini,et al.  Some Like it Hoax: Automated Fake News Detection in Social Networks , 2017, ArXiv.

[5]  M. Grabe,et al.  Image Bite Politics , 2009 .

[6]  Yimin Chen,et al.  Automatic deception detection: Methods for finding fake news , 2015, ASIST.

[7]  Michael Rich,et al.  Multitasking With Television Among Adolescents , 2015, Journal of broadcasting & electronic media.

[8]  P. Messaris,et al.  The Role of Images in Framing News Stories , 2001 .

[9]  Anupam Joshi,et al.  Faking Sandy: characterizing and identifying fake images on Twitter during Hurricane Sandy , 2013, WWW.

[10]  A. Ganapathiraju,et al.  LINEAR DISCRIMINANT ANALYSIS - A BRIEF TUTORIAL , 1995 .

[11]  René Weber,et al.  The Limited Capacity Model of Motivated Mediated Message Processing (LC4MP) , 2020 .

[12]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[13]  M. Pantti,et al.  Fake News , 2016, The Future of Journalism: Risks, Threats and Opportunities.

[14]  Irina Rish,et al.  An empirical study of the naive Bayes classifier , 2001 .

[15]  Jacob T. Fisher,et al.  Limited Capacity Model of Motivated Mediated Message Processing , 2020 .

[16]  J. Pennebaker,et al.  The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods , 2010 .

[17]  Yejin Choi,et al.  Syntactic Stylometry for Deception Detection , 2012, ACL.

[18]  Yiannis Kompatsiaris,et al.  Verifying Multimedia Use at MediaEval 2016 , 2015, MediaEval.

[19]  Alaa Tharwat,et al.  Linear vs. quadratic discriminant analysis classifier: a tutorial , 2016, Int. J. Appl. Pattern Recognit..

[20]  Michael D. Robinson,et al.  When "light" and "dark" thoughts become light and dark responses: affect biases brightness judgments. , 2007, Emotion.

[21]  John T. Cacioppo,et al.  The Elaboration Likelihood Model of Persuasion , 1986, Advances in Experimental Social Psychology.

[22]  Lina Yao,et al.  DUAL: A Deep Unified Attention Model with Latent Relation Representations for Fake News Detection , 2018, WISE.

[23]  E. Rasmussen Evaluation in Information Retrieval , 2002 .

[24]  Chi-Keung Tang,et al.  Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis , 2009, Pattern Recognit..

[25]  Seong Choul Hong,et al.  Scare sells? A framing analysis of news coverage of recalled Chinese products , 2013 .

[26]  Issa Traoré,et al.  Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques , 2017, ISDDC.

[27]  Suhang Wang,et al.  Fake News Detection on Social Media: A Data Mining Perspective , 2017, SKDD.

[28]  Ursula Smartt,et al.  Social media and fake news , 2020 .

[29]  Babajide Osatuyi,et al.  A Tale of Two Internet News Platforms-Real vs. Fake: An Elaboration Likelihood Model Perspective , 2018, HICSS.

[30]  M. Kubát An Introduction to Machine Learning , 2017, Springer International Publishing.

[31]  Sibel Adali,et al.  This Just In: Fake News Packs a Lot in Title, Uses Simpler, Repetitive Content in Text Body, More Similar to Satire than Real News , 2017, Proceedings of the International AAAI Conference on Web and Social Media.

[32]  Yongdong Zhang,et al.  Novel Visual and Statistical Image Features for Microblogs News Verification , 2017, IEEE Transactions on Multimedia.

[33]  Randall K. Minas,et al.  Approaching Fake News at the Expense of Truth: A Psychophysiological Study of News on Social Media , 2020, HICSS.

[34]  Hany Farid,et al.  Digital doctoring: how to tell the real from the fake , 2006 .

[35]  Robert M. Entman,et al.  Framing: Toward Clarification of a Fractured Paradigm , 1993 .

[36]  Jeff Z. Pan,et al.  Content Based Fake News Detection Using Knowledge Graphs , 2018, SEMWEB.

[37]  Gordon W. Russell,et al.  Why we watch: The attractions of violent entertainment , 2000 .

[38]  J. Cacioppo,et al.  Communication and persuasion , 1986 .

[39]  Jacob T. Fisher,et al.  The limited capacity model of motivated mediated message processing: looking to the future , 2018, Annals of the International Communication Association.

[40]  Guido Caldarelli,et al.  Science vs Conspiracy: Collective Narratives in the Age of Misinformation , 2014, PloS one.

[41]  Mervi Pantti,et al.  The Fragility of Photo-Truth , 2015 .

[42]  M. Grabe,et al.  Image Bite Politics: News and the Visual Framing of Elections , 2009 .

[43]  Yiannis Kompatsiaris,et al.  Web Video Verification using Contextual Cues , 2017, MFSec@ICMR.

[44]  Charles R. Honts Deception: Detection of , 2009 .

[45]  Victoria L. Rubin,et al.  Fake News or Truth? Using Satirical Cues to Detect Potentially Misleading News , 2016 .

[46]  Verónica Pérez-Rosas,et al.  Automatic Detection of Fake News , 2017, COLING.

[47]  Fenglong Ma,et al.  EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection , 2018, KDD.

[48]  Thomas J. Watson,et al.  An empirical study of the naive Bayes classifier , 2001 .

[49]  M. Gentzkow,et al.  Social Media and Fake News in the 2016 Election , 2017 .

[50]  Timothy Baldwin,et al.  Automatic Satire Detection: Are You Having a Laugh? , 2009, ACL.

[51]  Yimin Chen,et al.  Deception detection for news: Three types of fakes , 2015, ASIST.

[52]  Sibel Adali,et al.  NELA-GT-2018: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles , 2019, ICWSM.

[53]  Leif E. Peterson K-nearest neighbor , 2009, Scholarpedia.

[54]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[55]  Kai Shu Beyond News Contents: The Role of Social Context for Fake News Detection , 2018 .

[56]  William Stafford Noble,et al.  Support vector machine , 2013 .

[57]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[58]  C. D. Vreese,et al.  News framing: Theory and typology , 2005 .