The Real-Valued Maxwell-Bloch Equations with Controls: From a Hamilton-Poisson System to a Chaotic One
暂无分享,去创建一个
[1] J. P. Lasalle. Some Extensions of Liapunov's Second Method , 1960 .
[2] T. Bînzar,et al. A Rikitake type system with one control , 2013 .
[3] Julien Clinton Sprott,et al. A dynamical system with a strange attractor and invariant tori , 2014 .
[4] Gregory L. Baker,et al. Chaotic Dynamics: An Introduction , 1990 .
[5] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[6] Guanrong Chen,et al. Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.
[7] Guanrong Chen,et al. From Chaos to Order - Perspectives and Methodologies in Controlling Chaotic Nonlinear Dynamical Systems , 1993 .
[8] Darryl D. Holm,et al. Multiple lie-poisson structures, reductions, and geometric phases for the Maxwell-Bloch travelling wave equations , 1992 .
[9] J. Yorke,et al. Chaotic behavior of multidimensional difference equations , 1979 .
[10] Jaume Llibre,et al. Heteroclinic, Homoclinic and Closed Orbits in the Chen System , 2016, Int. J. Bifurc. Chaos.
[11] G. Tigan. Degenerate with respect to parameters fold-Hopf bifurcations , 2016 .
[12] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[13] On some dynamical and geometrical properties of the Maxwell-Bloch equations with a quadratic control , 2013, 1402.5942.
[14] Guanrong Chen,et al. A New Chaotic System and its Generation , 2003, Int. J. Bifurc. Chaos.
[15] Lee Sun-Jin. From Chaos to Order , 2011 .
[16] Cees Diks,et al. E&F Chaos: A User Friendly Software Package for Nonlinear Economic Dynamics , 2008 .
[17] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[18] Tudor Bînzar,et al. ON A HAMILTONIAN VERSION OF CONTROLS DYNAMIC FOR A DRIFT-FREE LEFT INVARIANT CONTROL SYSTEM ON G4 , 2012 .
[19] Daizhan Cheng,et al. A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.
[20] Anania Aron,et al. On a Hamiltonian Version of the Rikitake System , 2009, SIAM J. Appl. Dyn. Syst..
[21] Julien Clinton Sprott,et al. A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.
[22] Periodic orbits in the case of a zero eigenvalue , 2007, 0705.2361.
[23] Cristian Lazureanu,et al. A Rikitake Type System with quadratic Control , 2012, Int. J. Bifurc. Chaos.
[24] Hermann Haken,et al. At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point , 1983 .
[25] Julien Clinton Sprott,et al. Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.
[26] Nikolay V. Kuznetsov,et al. On differences and similarities in the analysis of Lorenz, Chen, and Lu systems , 2014, Appl. Math. Comput..
[27] Xiyin Liang,et al. Force Analysis of Qi Chaotic System , 2016, Int. J. Bifurc. Chaos.
[28] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[29] A. Rucklidge. Chaos in models of double convection , 1992, Journal of Fluid Mechanics.