The di- and tricalcium silicate dissolutions

Abstract In this study, a specially designed reactor connected to an ICP spectrometer enabled the careful determination of the dissolution rates of C 3 S, C 2 S and CaO, respectively, over a broad range of concentration of calcium and silicates under conditions devoid of C–S–H. The kinetic laws, bridging the dissolution rates and the undersaturations, were obtained after extrapolation of rate zero allowing the estimation of the true experimental solubility products of C 3 S (K sp  = 9.6 · 10 − 23 ), C 2 S (K sp  = 4.3 · 10 − 18 ) and CaO (K sp  = 9.17 · 10 − 6 ). The latter are then compared to the solubilities calculated from the enthalpies of formation. We propose that the observed deviations result from the protonation of the unsaturated oxygen atoms present at the surface of these minerals. Hydration rates measured in cement pastes or in C 3 S pastes are in excellent agreement with the kinetic law found in this study for C 3 S under conditions undersaturated with respect to C–S–H.

[1]  P. Aagaard,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations , 1982 .

[2]  J. Sonnefeld,et al.  The influence of ionic strength on the dissolution process of silica , 1999 .

[3]  I. Odler,et al.  Early hydration of tricalcium silicate III. Control of the induction period , 1981 .

[4]  A. Lasaga,et al.  A model for crystal dissolution , 2003 .

[5]  A. Nonat,et al.  A reply to the discussion "Accelerated growth of calcium silicate hydrates: Experiments and simulations" by S. Bishnoi and K. Scrivener☆ , 2012 .

[6]  Etude expérimentale et par simulation numérique de la cinétique de croissance et de la structure des hydrosilicates de calcium, produits d'hydratation des silicates tricalcique et dicalcique , 1998 .

[7]  Ellis Gartner,et al.  Discussion of the paper “Dissolution theory applied to the induction period in alite hydration” by P. Juilland et al., Cem. Concr. Res. 40 (2010) 831–844 , 2011 .

[8]  J. Ganor,et al.  Smectite dissolution kinetics at 80°C and pH 8.8 , 2000 .

[9]  L. Katz,et al.  Surface Complexation Modeling: II. Strategy for Modeling Polymer and Precipitation Reactions at High Surface Coverage , 1995 .

[10]  S. Brunauer,et al.  DEVELOPMENT OF SURFACE IN THE HYDRATION OF CALCIUM SILICATES. II. EXTENSION OF INVESTIGATIONS TO EARLIER AND LATER STAGES OF HYDRATION , 1962 .

[11]  J. Skalny,et al.  Crystal defects and hydration I. Influence of lattice defects , 1974 .

[12]  J. A. Davis,et al.  Surface complexation modeling in aqueous geochemistry , 1990 .

[13]  P. Dove The dissolution kinetics of quartz in sodium chloride solutions at 25 degrees to 300 degrees C , 1994 .

[14]  A. Lasaga,et al.  Free energy dependence of albite dissolution kinetics at 80°C and pH 8.8 , 1993 .

[15]  G. Sposito On the surface complexation model of the oxide-aqueous solution interface , 1983 .

[16]  I. Ritchie,et al.  The kinetics of lime slaking , 1990 .

[17]  James J. Beaudoin,et al.  Discussion of “Dissolution theory applied to the induction period in alite hydration” , 2011 .

[18]  Jie Zhang,et al.  Nucleation and growth models for hydration of cement , 2012 .

[19]  A. Lasaga,et al.  The effect of dislocation density on the dissolution rate of quartz , 1990 .

[20]  J. Bullard A Determination of Hydration Mechanisms for Tricalcium Silicate Using a Kinetic Cellular Automaton Model , 2008 .

[21]  A. Lasaga,et al.  Dissolution and precipitation kinetics of gibbsite at 80°C and pH 3: The dependence on solution saturation state , 1992 .

[22]  Costoya Fernández,et al.  Effect of particle size on the hydration kinetics and microstructural development of tricalcium silicate , 2008 .

[23]  E. Oelkers,et al.  Are quartz dissolution rates proportional to B.E.T. surface areas , 2001 .

[24]  Ingvi Gunnarsson,et al.  Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350°C at Psat , 2000 .

[25]  L. Nicoleau Interactions physico-chimiques entre le latex et les phases minérales constituant le ciment au cours de l'hydratation , 2004 .

[26]  H. N. Stein,et al.  Influence of silica on the hydration of 3 CaO,SiO2 , 2007 .

[27]  A. Lasaga,et al.  Dissolution and precipitation kinetics of kaolinite at 80 degrees C and pH 3; the dependence on solution saturation state , 1991 .

[28]  Egon Matijević,et al.  Surface and Colloid Science , 1971 .

[29]  A. Nonat,et al.  Hydrated Layer Formation on Tricalcium and Dicalcium Silicate Surfaces: Experimental Study and Numerical Simulations , 2001 .

[30]  K. Jošt,et al.  Redetermination of the structure of -dicalcium silicate , 1977 .

[31]  S. Brantley,et al.  Dissolution kinetics of strained calcite , 1989 .

[32]  G. R. Holdren,et al.  Dissolution kinetics of experimentally shocked silicate minerals , 1989 .

[33]  A. Lüttge Crystal dissolution kinetics and Gibbs free energy , 2006 .

[34]  André Nonat,et al.  Experimental investigation of calcium silicate hydrate (C-S-H) nucleation , 1999 .

[35]  B. Möser,et al.  Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate , 2010 .

[36]  P. Fierens,et al.  Hydration of tricalcium silicate in paste — Kinetics of calcium ions dissolution in the aqueous phase☆ , 1976 .

[37]  Jeffrey J. Thomas,et al.  A New Approach to Modeling the Nucleation and Growth Kinetics of Tricalcium Silicate Hydration , 2007 .

[38]  Hamlin M. Jennings,et al.  Thermodynamics of Calcium Silicate Hydrates and Their Solutions , 1987 .

[39]  J. Donald Rimstidt,et al.  QUARTZ SOLUBILITY AT LOW TEMPERATURES , 1997 .

[40]  A. Lasaga Chapter 2. FUNDAMENTAL APPROACHES IN DESCRIBING MINERAL DISSOLUTION AND PRECIPITATION RATES , 1995 .

[41]  G. A. Parks,et al.  Characterization of Aqueous Colloids by Their Electrical Double-Layer and Intrinsic Surface Chemical Properties , 1982 .

[42]  A. Lasaga,et al.  Variation of Crystal Dissolution Rate Based on a Dissolution Stepwave Model , 2001, Science.

[43]  Luc Nicoleau,et al.  Accelerated growth of calcium silicate hydrates: Experiments and simulations , 2011 .

[44]  J. Bullard,et al.  Mechanisms of cement hydration , 2011 .

[45]  H. Taylor,et al.  Solubility and structure of calcium silicate hydrate , 2004 .

[46]  A. Navrotsky Nanoscale effects on thermodynamics and phase equilibria in oxide systems. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[47]  Robert J. Flatt,et al.  Dissolution theory applied to the induction period in alite hydration , 2010 .

[48]  K. Scrivener,et al.  Studying nucleation and growth kinetics of alite hydration using μic , 2009 .

[49]  I. Maki,et al.  Tricalcium Silicate Ca3O[SIO4]: The monoclinic superstructure , 1985 .

[50]  Bruno C. Hancock,et al.  What is the True Solubility Advantage for Amorphous Pharmaceuticals? , 2000, Pharmaceutical Research.

[51]  A. Lasaga,et al.  The dependence of labradorite dissolution and Sr isotope release rates on solution saturation state , 2000 .

[52]  W. Dreybrodt,et al.  Dissolution rates of minerals and their relation to surface morphology , 2002 .

[53]  W. Casey,et al.  Crystal defects and the dissolution kinetics of rutile , 1988 .

[54]  H. N. Stein,et al.  Suspension hydration of C3S at constant pH. I. Variation of particle size and C3S content , 1973 .

[55]  P. Brown,et al.  A kinetic model for the hydration of tricalcium silicate , 1985 .

[56]  B. Lothenbach,et al.  Thermodynamic modelling of the hydration of Portland cement , 2006 .