On Buffon machines and numbers

The well-know needle experiment of Buffon can be regarded as an analog (i.e., continuous) device that stochastically "computes" the number 2/π = 0.63661, which is the experiment's probability of success. Generalizing the experiment and simplifying the computational framework, we consider probability distributions, which can be produced perfectly, from a discrete source of unbiased coin flips. We describe and analyse a few simple Buffon machines that generate geometric, Poisson, and logarithmic-series distributions. We provide human-accessible Buffon machines, which require a dozen coin flips or less, on average, and produce experiments whose probabilities of success are expressible in terms of numbers such as π, exp(−1), log2, √3, cos(1/4), ζ(5). Generally, we develop a collection of constructions based on simple probabilistic mechanisms that enable one to design Buffon experiments involving compositions of exponentials and logarithms, polylogarithms, direct and inverse trigonometric functions, algebraic and hypergeometric functions, as well as functions defined by integrals, such as the Gaussian error function.

[1]  Philippe Flajolet,et al.  Dynamical Sources in Information Theory : A General Analysis of Trie Structures , 1999 .

[2]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[3]  Y. Peres Iterating Von Neumann's Procedure for Extracting Random Bits , 1992 .

[4]  B. Vall Dynamical Sources in Information Theory: Fundamental Intervals and Word Prefixes , 2001 .

[5]  Brigitte Vallée,et al.  Dynamical Sources in Information Theory : Fundamental intervals and Word Pre xes , 1998 .

[6]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[7]  Wojciech Szpankowski,et al.  On the distribution for the duration of a randomized leader election algorithm , 1996 .

[8]  Mireille Régnier,et al.  Analytic variations on bucket selection and sorting , 2000, Acta Informatica.

[9]  Y. Peres,et al.  Fast simulation of new coins from old , 2003, math/0309222.

[10]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[11]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[12]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[13]  George L. O'Brien,et al.  A Bernoulli factory , 1994, TOMC.

[14]  Helmut Prodinger,et al.  How to select a loser , 1993, Discret. Math..

[15]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[16]  Arnold Schönhage,et al.  Fast algorithms - a multitape Turing machine implementation , 1994 .

[17]  W. Szpankowski Average Case Analysis of Algorithms on Sequences , 2001 .

[18]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[19]  Johan Wästlund Functions arising by coin flipping , 1999 .

[20]  Andrew Chi-Chih Yao,et al.  The complexity of nonuniform random number generation , 1976 .

[21]  Yuval Peres,et al.  New Coins From Old: Computing With Unknown Bias , 2005, Comb..

[22]  P. Flajolet,et al.  Boltzmann Sampling of Unlabelled Structures , 2006 .

[23]  Philippe Flajolet,et al.  The Complexity of Generating an Exponentially Distributed Variate , 1986, J. Algorithms.

[24]  J. F. Scott Distribution Theory , 1973, Nature.

[25]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[26]  L. Lewin Structural Properties of Polylogarithms , 1991 .

[27]  Jesús Guillera A New Method to Obtain Series for 1/π and 1/π2 , 2006, Exp. Math..

[28]  H. Mahmoud Sorting: A Distribution Theory , 2000 .

[29]  B. Salvy,et al.  Boltzmann Oracle for Combinatorial Systems , 2008 .

[30]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[31]  Lee Badger,et al.  Lazzarini's Lucky Approximation of π , 1994 .

[32]  David Bailey,et al.  On the rapid computation of various polylogarithmic constants , 1997, Math. Comput..

[33]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[34]  Mireille Régnier,et al.  Trie Partitioning Process: Limiting Distributions , 1986, CAAP.

[35]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[36]  Michael Luttenberger,et al.  On the convergence of Newton's method for monotone systems of polynomial equations , 2007, STOC '07.

[37]  B. Berndt Ramanujan’s Notebooks: Part V , 1997 .