Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation

[1]  C. Kole,et al.  Arabidopsis Genome Initiative , 2016 .

[2]  H. Quesneville,et al.  Ancestral repeats have shaped epigenome and genome composition for millions of years in Arabidopsis thaliana , 2014, Nature Communications.

[3]  Kun Lu,et al.  The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes , 2014, Nature Communications.

[4]  D. Weigel,et al.  The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana , 2013, eLife.

[5]  Alan M. Moses,et al.  An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions , 2013, Nature Genetics.

[6]  Xun Xu,et al.  The Tarenaya hassleriana Genome Provides Insight into Reproductive Trait and Genome Evolution of Crucifers[W][OPEN] , 2013, Plant Cell.

[7]  Mathieu Blanchette,et al.  The Capsella rubella genome and the genomic consequences of rapid mating system evolution , 2013, Nature Genetics.

[8]  Simon Prochnik,et al.  The Reference Genome of the Halophytic Plant Eutrema salsugineum , 2013, Front. Plant Sci..

[9]  Triambak Saxena,et al.  Interactions between temperature and sugars in the regulation of leaf senescence in the perennial herb Arabis alpina L. , 2012, Journal of integrative plant biology.

[10]  Jun Wang,et al.  Insights into salt tolerance from the genome of Thellungiella salsuginea , 2012, Proceedings of the National Academy of Sciences.

[11]  Karsten M. Borgwardt,et al.  Spontaneous epigenetic variation in the Arabidopsis thaliana methylome , 2011, Nature.

[12]  J. Poulain,et al.  The genome of the mesopolyploid crop species Brassica rapa , 2011, Nature Genetics.

[13]  J. Vogel,et al.  Sporophytic self-incompatibility genes and mating system variation in Arabis alpina. , 2011, Annals of botany.

[14]  H. Bohnert,et al.  The genome of the extremophile crucifer Thellungiella parvula , 2011, Nature Genetics.

[15]  Stéphane Robin,et al.  Integrative epigenomic mapping defines four main chromatin states in Arabidopsis , 2011, The EMBO journal.

[16]  Richard M. Clark,et al.  The Arabidopsis lyrata genome sequence and the basis of rapid genome size change , 2011, Nature Genetics.

[17]  Detlef Weigel,et al.  Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata , 2011, Proceedings of the National Academy of Sciences.

[18]  D. Zilberman,et al.  Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation , 2010, Science.

[19]  Julie A. Law,et al.  Establishing, maintaining and modifying DNA methylation patterns in plants and animals , 2010, Nature Reviews Genetics.

[20]  T. Kakutani,et al.  Bursts of retrotransposition reproduced in Arabidopsis , 2009, Nature.

[21]  D. Weigel,et al.  Selective epigenetic control of retrotransposition in Arabidopsis , 2009, Nature.

[22]  M. Matzke,et al.  RNA-mediated chromatin-based silencing in plants. , 2009, Current opinion in cell biology.

[23]  C. Vincent,et al.  PEP1 regulates perennial flowering in Arabis alpina , 2009, Nature.

[24]  M. Pellegrini,et al.  Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana , 2009, Genome Biology.

[25]  S. Nelson,et al.  Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning , 2008, Nature.

[26]  M. Pellegrini,et al.  Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis , 2006, Cell.

[27]  A. E. Hall,et al.  Dynamic evolution at pericentromeres. , 2006, Genome research.

[28]  C. Langley,et al.  Comparing the Linkage Maps of the Close Relatives Arabidopsis lyrata and A. thaliana , 2004, Genetics.

[29]  Jianxin Ma,et al.  Rapid recent growth and divergence of rice nuclear genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[31]  Phillip SanMiguel,et al.  Evidence that a Recent Increase in Maize Genome Size was Caused by the Massive Amplification of Intergene Retrotransposons , 1998 .