A convolution quadrature Galerkin boundary element method for the exterior Neumann problem of the wave equation

The numerical solution of the Neumann problem of the wave equation on unbounded three-dimensional domains is calculated using the convolution quadrature method for the time discretization and a Galerkin boundary element method for the spatial discretization. The mathematical analysis that has been built up for the Dirichlet problem is extended and developed for the Neumann problem, which is important for many modelling applications. Numerical examples are then presented for one of these applications, modelling transient acoustic radiation. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Wolfgang Hackbusch,et al.  Sparse convolution quadrature for time domain boundary integral formulations of the wave equation , 2008 .

[2]  W. Mansur,et al.  Initial conditions contribution in a BEM formulation based on the convolution quadrature method , 2006 .

[3]  E. Michielssen,et al.  Analysis of transient wave scattering from rigid bodies using a Burton–Miller approach , 1999 .

[4]  P. Smith,et al.  Instabilities in Time Marching Methods for Scattering: Cause and Rectification , 1990 .

[5]  M. B. Friedman,et al.  Diffraction of Pulses by Cylindrical Obstacles of Arbitrary Cross Section , 1962 .

[6]  P. Henrici Fast Fourier Methods in Computational Complex Analysis , 1979 .

[7]  Björn Birgisson,et al.  Elastodynamic direct boundary element methods with enhanced numerical stability properties , 1999 .

[8]  Dj Chappell,et al.  A stable boundary element method for modeling transient acoustic radiation , 2006 .

[9]  T. Ha-Duong,et al.  A Galerkin BEM for transient acoustic scattering by an absorbing obstacle , 2003 .

[10]  B. Rynne Stability and Convergence of Time Marching Methods in Scattering Problems , 1985 .

[11]  B. P. Rynne,et al.  Stability of Time Marching Algorithms for the Electric Field Integral Equation , 1990 .

[12]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[13]  Martin Schanz,et al.  Application of 3D time domain boundary element formulation to wave propagation in poroelastic solids , 2001 .

[14]  C. Lubich,et al.  On the multistep time discretization of linear\newline initial-boundary value problems and their boundary integral equations , 1994 .

[15]  Simon P. Walker,et al.  ANALYSIS OF THREE-DIMENSIONAL TRANSIENT ACOUSTIC WAVE PROPAGATION USING THE BOUNDARY INTEGRAL EQUATION METHOD , 1996 .

[16]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par une surface rigide , 1986 .

[17]  K. Mitzner,et al.  Numerical Solution for Transient Scattering from a Hard Surface of Arbitrary Shape—Retarded Potential Technique , 1967 .

[18]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .