Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
暂无分享,去创建一个
Massimiliano Pontil | Carlo Ciliberto | Saverio Salzo | Giulia Luise | M. Pontil | C. Ciliberto | Saverio Salzo | Giulia Luise
[1] Gabriel Peyré,et al. Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..
[2] S. Smale,et al. Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .
[3] Roger D. Nussbaum,et al. Entropy Minimization, Hilbert′s Projective Metric, and Scaling Integral Kernels , 1993 .
[4] Karsten M. Borgwardt,et al. Learning via Hilbert Space Embedding of Distributions , 2007 .
[5] Gabriel Peyré,et al. Sample Complexity of Sinkhorn Divergences , 2018, AISTATS.
[6] G. Burton. Sobolev Spaces , 2013 .
[7] Kim C. Border,et al. Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .
[8] Richard Sinkhorn,et al. Concerning nonnegative matrices and doubly stochastic matrices , 1967 .
[9] Bas Lemmens,et al. Nonlinear Perron-Frobenius Theory , 2012 .
[10] L. Devroye,et al. No Empirical Probability Measure can Converge in the Total Variation Sense for all Distributions , 1990 .
[11] Francis R. Bach,et al. On the Equivalence between Herding and Conditional Gradient Algorithms , 2012, ICML.
[12] Le Song,et al. A Hilbert Space Embedding for Distributions , 2007, Discovery Science.
[13] J. Dunn,et al. Conditional gradient algorithms with open loop step size rules , 1978 .
[14] Justin Solomon,et al. Stochastic Wasserstein Barycenters , 2018, ICML.
[15] David B. Dunson,et al. Scalable Bayes via Barycenter in Wasserstein Space , 2015, J. Mach. Learn. Res..
[16] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[17] Kenji Fukumizu,et al. Universality, Characteristic Kernels and RKHS Embedding of Measures , 2010, J. Mach. Learn. Res..
[18] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[19] Richard Sinkhorn,et al. A Note Concerning Simultaneous Integral Equations , 1968, Canadian Journal of Mathematics.
[20] Benjamin Recht,et al. The alternating descent conditional gradient method for sparse inverse problems , 2015, CAMSAP.
[21] Alain Trouvé,et al. Interpolating between Optimal Transport and MMD using Sinkhorn Divergences , 2018, AISTATS.
[22] V. V. Yurinskii. Exponential inequalities for sums of random vectors , 1976 .
[23] V. F. Dem'yanov,et al. Minimization of Functionals in Normed Spaces , 1968 .
[24] M. V. Menon. REDUCTION OF A MATRIX WITH POSITIVE ELEMENTS TO A DOUBLY STOCHASTIC MATRIX , 1967 .
[25] Leonidas J. Guibas,et al. Wasserstein Propagation for Semi-Supervised Learning , 2014, ICML.
[26] Cícero Nogueira dos Santos,et al. Wasserstein Barycenter Model Ensembling , 2019, ICLR.
[27] Benjamin Pfaff,et al. Perturbation Analysis Of Optimization Problems , 2016 .
[28] Gabriel Peyré,et al. Stochastic Optimization for Large-scale Optimal Transport , 2016, NIPS.
[29] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[30] J. Lorenz,et al. On the scaling of multidimensional matrices , 1989 .
[31] Bernhard Schölkopf,et al. Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..
[32] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[33] Gabriel Peyré,et al. Computational Optimal Transport , 2018, Found. Trends Mach. Learn..
[34] R. Nussbaum,et al. Birkhoff's version of Hilbert's metric and its applications in analysis , 2013, 1304.7921.
[35] Arnaud Doucet,et al. Fast Computation of Wasserstein Barycenters , 2013, ICML.
[36] K. Bredies,et al. Inverse problems in spaces of measures , 2013 .
[37] M. Urner. Scattered Data Approximation , 2016 .
[38] Gabriel Peyré,et al. Learning Generative Models with Sinkhorn Divergences , 2017, AISTATS.
[39] V. F. Dem'yanov,et al. The Minimization of a Smooth Convex Functional on a Convex Set , 1967 .
[40] Justin Solomon,et al. Parallel Streaming Wasserstein Barycenters , 2017, NIPS.
[41] Gabriel Peyré,et al. Fast Optimal Transport Averaging of Neuroimaging Data , 2015, IPMI.
[42] R. Nussbaum. Hilbert's Projective Metric and Iterated Nonlinear Maps , 1988 .
[43] C. Villani. Optimal Transport: Old and New , 2008 .
[44] J. Marsden,et al. Lectures on analysis , 1969 .
[45] François-Xavier Vialard,et al. Scaling algorithms for unbalanced optimal transport problems , 2017, Math. Comput..
[46] Darina Dvinskikh,et al. Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters , 2018, NeurIPS.
[47] I. Pinelis. OPTIMUM BOUNDS FOR THE DISTRIBUTIONS OF MARTINGALES IN BANACH SPACES , 1994, 1208.2200.
[48] Julien Rabin,et al. Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.
[49] James Zijun Wang,et al. Fast Discrete Distribution Clustering Using Wasserstein Barycenter With Sparse Support , 2015, IEEE Transactions on Signal Processing.
[50] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[51] Bernhard Schölkopf,et al. Kernel Mean Embedding of Distributions: A Review and Beyonds , 2016, Found. Trends Mach. Learn..
[52] Fredrik Lindsten,et al. Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering , 2015, AISTATS.