Optimizing an organized modularity measure for topographic graph clustering: A deterministic annealing approach

This paper proposes an organized generalization of Newman and Girvan's modularity measure for graph clustering. Optimized via a deterministic annealing scheme, this measure produces topologically ordered graph clusterings that lead to faithful and readable graph representations based on clustering induced graphs. Topographic graph clustering provides an alternative to more classical solutions in which a standard graph clustering method is applied to build a simpler graph that is then represented with a graph layout algorithm. A comparative study on four real world graphs ranging from 34 to 1133 vertices shows the interest of the proposed approach with respect to classical solutions and to self-organizing maps for graphs.

[1]  J. Reichardt,et al.  Statistical mechanics of community detection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[3]  Klaus Obermayer,et al.  Self-organizing maps: Generalizations and new optimization techniques , 1998, Neurocomputing.

[4]  Romain Bourqui,et al.  How to Draw ClusteredWeighted Graphs using a Multilevel Force-Directed Graph Drawing Algorithm , 2007, 2007 11th International Conference Information Visualization (IV '07).

[5]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[6]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[8]  A Díaz-Guilera,et al.  Self-similar community structure in a network of human interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Andreas Noack,et al.  Energy Models for Graph Clustering , 2007, J. Graph Algorithms Appl..

[10]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[11]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[12]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[13]  Dell Zhang,et al.  A new kernel for classification of networked entities , 2008 .

[14]  Risi Kondor,et al.  Diffusion kernels on graphs and other discrete structures , 2002, ICML 2002.

[15]  Satu Elisa Schaeffer,et al.  Graph Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[16]  Carter T. Butts,et al.  network: A Package for Managing Relational Data in R , 2008 .

[17]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[18]  Andreas Noack,et al.  Modularity clustering is force-directed layout , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[20]  K. Rose Deterministic annealing for clustering, compression, classification, regression, and related optimization problems , 1998, Proc. IEEE.

[21]  M. Opper,et al.  Advanced mean field methods: theory and practice , 2001 .

[22]  Helen C. Purchase,et al.  Metrics for Graph Drawing Aesthetics , 2002, J. Vis. Lang. Comput..

[23]  Donald E. Knuth,et al.  The Stanford GraphBase - a platform for combinatorial computing , 1993 .

[24]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[27]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[28]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[29]  Andreas Noack,et al.  Multi-level Algorithms for Modularity Clustering , 2008, SEA.

[30]  Martin Suter,et al.  Small World , 2002 .

[31]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Tommi S. Jaakkola,et al.  Tutorial on variational approximation methods , 2000 .

[33]  Juha Vesanto,et al.  Data exploration process based on the self-organizing map , 2002 .

[34]  Ivan Herman,et al.  Graph Visualisation and Navigation in Information Visualisation , 1999, Eurographics.

[35]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[36]  A. Arenas,et al.  Community detection in complex networks using extremal optimization. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Fabrice Rossi,et al.  Batch kernel SOM and related Laplacian methods for social network analysis , 2008, Neurocomputing.

[38]  Michel Verleysen,et al.  Quality assessment of dimensionality reduction: Rank-based criteria , 2009, Neurocomputing.

[39]  D. R. Montello,et al.  The Distance–Similarity Metaphor in Network-Display Spatializations , 2004 .

[40]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[42]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[43]  Xuemin Lin,et al.  Straight-Line Drawing Algorithms for Hierarchical Graphs and Clustered Graphs , 1996, Graph Drawing.

[44]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[45]  François Fouss,et al.  Graph nodes clustering with the sigmoid commute-time kernel: A comparative study , 2009, Data Knowl. Eng..

[46]  Lars Kai Hansen,et al.  Deterministic modularity optimization , 2007 .

[47]  Gene H. Golub,et al.  Matrix computations , 1983 .

[48]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[49]  Fabrice Rossi,et al.  A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph , 2007 .

[50]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[51]  Colin Ware,et al.  Cognitive Measurements of Graph Aesthetics , 2002, Inf. Vis..

[52]  Fabrice Rossi,et al.  Mining a medieval social network by kernel SOM and related methods , 2008, 0805.1374.

[53]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[54]  B. Hammer,et al.  Topographic Processing of Relational Data , 2007 .

[55]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[56]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[57]  K. Obermayer,et al.  PHASE TRANSITIONS IN STOCHASTIC SELF-ORGANIZING MAPS , 1997 .

[58]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..