Carbon dioxide dynamics of combined crops of wheat, cowpea, pinto beans in the Laboratory Biosphere closed ecological system

Abstract A mixed crop consisting of cowpeas, pinto beans and Apogee ultra-dwarf wheat was grown in the Laboratory Biosphere, a 40 m 3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m 2 of soil. Similar to earlier reported experiments, the concentration of carbon dioxide initially increased to 7860 ppm at 10 days after planting due to soil respiration plus CO 2 contributed from researchers breathing while in the chamber for brief periods before plant growth became substantial. Carbon dioxide concentrations then fell rapidly as plant growth increased up to 29 days after planting and subsequently was maintained mostly in the range of about 200–3000 ppm (with a few excursions) by CO 2 injections to feed plant growth. Numerous analyses of rate of change of CO 2 concentration at many different concentrations and at many different days after planting reveal a strong dependence of fixation rates on CO 2 concentration. In the middle period of growth (days 31–61), fixation rates doubled for CO 2 at 450 ppm compared to 270 ppm, doubled again at 1000 ppm and increased a further 50% at 2000 ppm. High productivity from these crops and the increase of fixation rates with elevated CO 2 concentration supports the concept that enhanced CO 2 can be a useful strategy for remote life support systems. The data suggests avenues of investigation to understand the response of plant communities to increasing CO 2 concentrations in the Earth’s atmosphere. Carbon balance accounting and evapotranspiration rates are included.