Distributed PSO Algorithm for Data Model Partitioning in Power Distribution Systems

This paper presents a method for data model partitioning of power distribution network. Modern DistributionManagement Systems which utilize multiprocessor systems for efficient processing of large data model areconsidered. The data model partitioning is carried out for parallelization of analytical power calculations. The proposedalgorithms (Particle Swarm Optimization (PSO) and distributed PSO algorithms) are applied on data model describinglarge power distribution network. The experimental results of PSO and distributed PSO algorithms are presented.Distributed PSO algorithm achieves significantly better results than the basic PSO algorithm.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  Srdjan Vukmirovic,et al.  A Hybrid Genetic Algorithm for Partitioning of Data Model in Distribution Management Systems , 2011, Inf. Technol. Control..

[3]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[4]  Michael N. Vrahatis,et al.  Particle swarm optimization for integer programming , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[5]  Gerald Thomas Heydt,et al.  The Next Generation of Power Distribution Systems , 2010, IEEE Transactions on Smart Grid.

[6]  Aleksandar Erdeljan,et al.  An Optimal Relationship-Based Partitioning of Large Datasets , 2010, ADBIS.

[7]  C Vladimir Strezoski,et al.  DMS - BASIS FOR INCREASING OF GREEN DISTRIBUTED GENERATION PENETRATION IN DISTRIBUTION NETWORKS , 2012 .

[8]  Aleksandar Erdeljan,et al.  Optimal Workflow Scheduling in Critical Infrastructure Systems with Neural Networks , 2012 .

[9]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[10]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[11]  Byung Ro Moon,et al.  Genetic Algorithm and Graph Partitioning , 1996, IEEE Trans. Computers.

[12]  Edward O. Wilson,et al.  What is sociobiology? , 1978 .

[13]  S. Borlase,et al.  The evolution of distribution , 2009, IEEE Power and Energy Magazine.

[14]  S. Vukmirovic,et al.  Extension of the Common Information Model with Virtual Meter , 2015 .

[15]  Jesús Antonio Álvarez-Cedillo,et al.  Comparative Study of Parallel Variants for a Particle Swarm Optimization , 2009 .

[16]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  Ahmad Makui,et al.  Linear programming embedded particle swarm optimization for solving an extended model of dynamic virtual cellular manufacturing systems , 2009 .

[19]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[20]  H. Kuo,et al.  Cultural Evolution Algorithm for Global Optimizations and its Applications , 2013 .

[21]  Laguna,et al.  Comparative Study of Parallel Variants for a Particle Swarm Optimization Algorithm Implemented on a Multithreading Gpu , 2009 .

[22]  G. Holton Sociobiology: the new synthesis? , 1977, Newsletter on science, technology & human values.