Stellar Populations of Lyα-emitting Galaxies in the HETDEX Survey. I. An Analysis of LAEs in the GOODS-N Field
暂无分享,去创建一个
E. Gawiser | S. Finkelstein | V. Acquaviva | G. Hill | W. Kollatschny | R. Ciardullo | M. Landriau | C. Gronwall | K. Gebhardt | E. Cooper | Chenxu Liu | G. Leung | William P. Bowman | D. Davis | I. Jung | A. Sánchez | Oscar A. Chavez Ortiz | Adam P. McCarron | Delaney R. White | Daniel N. Mock | Óscar A. Chávez Ortiz | Daniel Mock
[1] A. Coil,et al. The Effects of Stellar Population and Gas Covering Fraction on the Emergent Lyα Emission of High-redshift Galaxies , 2021, The Astrophysical Journal.
[2] L. Y. Aaron Yung,et al. A Census of the Bright z = 8.5–11 Universe with the Hubble and Spitzer Space Telescopes in the CANDELS Fields , 2021, The Astrophysical Journal.
[3] Brianna P. Thomas,et al. The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) Survey Design, Reductions, and Detections , 2021, The Astrophysical Journal.
[4] L. Ramsey,et al. The HETDEX Instrumentation: Hobby–Eberly Telescope Wide-field Upgrade and VIRUS , 2021, The Astronomical Journal.
[5] A. Dey,et al. The Role of Dust, UV Luminosity and Large-scale Environment on the Escape of Lyα Photons: A Case Study of a Protocluster Field at z = 3.1 , 2021, The Astrophysical Journal.
[6] Ariel G. S'anchez,et al. Correcting correlation functions for redshift-dependent interloper contamination , 2021, Monthly Notices of the Royal Astronomical Society.
[7] T. Nagao,et al. SILVERRUSH X: Machine Learning-aided Selection of 9318 LAEs at z = 2.2, 3.3, 4.9, 5.7, 6.6, and 7.0 from the HSC SSP and CHORUS Survey Data , 2021, The Astrophysical Journal.
[8] L. Wisotzki,et al. The HETDEX Survey: The Lyα Escape Fraction from 3D-HST Emission-Line Galaxies at z ∼ 2 , 2021, The Astrophysical Journal.
[9] L. Infante,et al. Correlations between H α equivalent width and galaxy properties at z = 0.47: Physical or selection-driven? , 2021, 2103.10959.
[10] R. Naidu,et al. The X-SHOOTER Lyman α survey at z = 2 (XLS-z2) I: what makes a galaxy a Lyman α emitter? , 2021, Monthly Notices of the Royal Astronomical Society.
[11] M. Ouchi,et al. Observations of the Lyman-α Universe , 2020, Annual Review of Astronomy and Astrophysics.
[12] S. Finkelstein,et al. Texas Spectroscopic Search for Lyα Emission at the End of Reionization. III. The Lyα Equivalent-width Distribution and Ionized Structures at z > 7 , 2020, The Astrophysical Journal.
[13] Jaime Fern'andez del R'io,et al. Array programming with NumPy , 2020, Nature.
[14] D. Sobral,et al. The evolution of rest-frame UV properties, Ly α EWs, and the SFR–stellar mass relation at z ∼ 2–6 for SC4K LAEs , 2019, Monthly Notices of the Royal Astronomical Society.
[15] A. Strom,et al. Predicting Lyα Emission from Galaxies via Empirical Markers of Production and Escape in the KBSS , 2019, The Astrophysical Journal.
[16] B. Garilli,et al. The VANDELS survey: the role of ISM and galaxy physical properties in the escape of Lyα emission in z ∼ 3.5 star-forming galaxies , 2019, Astronomy & Astrophysics.
[17] S. Finkelstein,et al. Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction , 2019, The Astrophysical Journal.
[18] et al,et al. Gaia Data Release 2 , 2018, Astronomy & Astrophysics.
[19] J. Brinchmann,et al. The MUSE Hubble Ultra Deep Field Survey , 2018, Astronomy & Astrophysics.
[20] R. Ellis,et al. The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman-break Galaxies at z ∼ 2–4 , 2018, The Astrophysical Journal.
[21] S. Finkelstein,et al. Texas Spectroscopic Search for Lyα Emission at the End of Reionization I. Constraining the Lyα Equivalent-width Distribution at 6.0 < z < 7.0 , 2018, The Astrophysical Journal.
[22] R. Davé,et al. Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.
[23] D. Sobral,et al. Slicing COSMOS with SC4K: the evolution of typical Ly α emitters and the Ly α escape fraction from z ∼ 2 to 6 , 2017, 1712.04451.
[24] A. Coil,et al. The MOSDEF Survey: A Stellar Mass–SFR–Metallicity Relation Exists at z ∼ 2.3 , 2017, 1711.00224.
[25] J. Silverman,et al. The Stellar Mass, Star Formation Rate and Dark Matter Halo Properties of LAEs at $z\sim2$ , 2017, 1707.09373.
[26] G. Blanc,et al. A Comprehensive Study of Lyα Emission in the High-redshift Galaxy Population , 2017, 1706.01886.
[27] N. Kashikawa,et al. Direct evidence for Ly$\boldsymbol{\alpha }$ depletion in the protocluster core , 2017, 1702.00100.
[28] Benjamin D. Johnson,et al. Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.
[29] Daniel Foreman-Mackey,et al. corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..
[30] David W. Hogg,et al. The Tractor: Probabilistic astronomical source detection and measurement , 2016 .
[31] Stanford,et al. THE SPITZER-HETDEX EXPLORATORY LARGE-AREA SURVEY , 2016, 1603.05660.
[32] W. Brandt,et al. THE 2 Ms CHANDRA DEEP FIELD-NORTH SURVEY AND THE 250 Ks EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY: IMPROVED POINT-SOURCE CATALOGS , 2016, 1602.06299.
[33] H. Rottgering,et al. The CALYMHA survey: Lyα escape fraction and its dependence on galaxy properties at z = 2.23 , 2016, 1602.02756.
[34] E. Komatsu,et al. Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths , 2015, 1510.07043.
[35] J. Dunlop,et al. S-CANDELS: THE SPITZER-COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2015, 1506.01323.
[36] M. Hayes. Lyman Alpha Emitting Galaxies in the Nearby Universe , 2015, Publications of the Astronomical Society of Australia.
[37] P. W. Wang,et al. The VIMOS Ultra Deep Survey: Lyα emission and stellar populations of star-forming galaxies at 2 < z < 2.5 , 2015, 1503.01753.
[38] Andreas Kelz,et al. VIRUS: assembly, testing and performance of 33,000 fibres for HETDEX , 2014, Astronomical Telescopes and Instrumentation.
[39] M. Dijkstra. Lyα Emitting Galaxies as a Probe of Reionisation , 2014, Publications of the Astronomical Society of Australia.
[40] Iap,et al. Influence of physical galaxy properties on Lyα escape in star-forming galaxies , 2013, 1308.6577.
[41] M. Dickinson,et al. Cosmic Star-Formation History , 1996, 1403.0007.
[42] C. Conroy. Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.
[43] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[44] S. Ravindranath,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.
[45] Ulrich Hopp,et al. HETDEX pilot survey for emission-line galaxies - I. Survey design, performance, and catalog , 2010, 1011.0426.
[46] H. Ferguson,et al. The rising star formation histories of distant galaxies and implications for gas accretion with time , 2010, 1007.4554.
[47] A. Fontana,et al. Physical and morphological properties of z ~ 3 Lyman break galaxies: dependence on Lyα line emission , 2010, 1002.2068.
[48] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[49] A. Fontana,et al. The physical properties of Lyα emitting galaxies: not just primeval galaxies? , 2008, 0811.1861.
[50] K. Schawinski,et al. Lyα-Emitting Galaxies at z = 3.1: L* Progenitors Experiencing Rapid Star Formation , 2007, 0710.2697.
[51] L. Infante,et al. Lyα Emission-Line Galaxies at z = 3.1 in the Extended Chandra Deep Field-South , 2007, 0705.3917.
[52] K. Aoki,et al. Deficiency of Large Equivalent Width Lyα Emission in Luminous Lyman Break Galaxies at z ~ 5-6? , 2006, astro-ph/0605289.
[53] James Rhoads,et al. Luminosity Functions of Lyα Emitters at Redshifts z = 6.5 and z = 5.7: Evidence against Reionization at z ≤ 6.5 , 2004, astro-ph/0407408.
[54] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[55] S. M. Fall,et al. The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging , 2003, astro-ph/0309105.
[56] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[57] M. Pettini,et al. Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.
[58] H. Ferguson,et al. The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.
[59] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[60] S. M. Fall,et al. A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.
[61] H. Spinrad,et al. First Results from the Large-Area Lyman Alpha Survey , 1999, astro-ph/0003465.
[62] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[63] L. Cowie,et al. High-z Lyα Emitters. I. A Blank-Field Search for Objects near Redshift z = 3.4 in and around the Hubble Deep Field and the Hawaii Deep Field SSA 22 , 1998, astro-ph/9801003.
[64] Jordi Miralda-Escude,et al. Reionization of the Intergalactic Medium and the Damping Wing of the Gunn-Peterson Trough , 1997, astro-ph/9708253.
[65] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[66] A. Kinney,et al. Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .
[67] Thomas A. Sebring,et al. Spectroscopic survey telescope project , 1994, Astronomical Telescopes and Instrumentation.
[68] D. Neufeld. The Escape of Lyman-Alpha Radiation from a Multiphase Interstellar Medium , 1991 .
[69] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[70] K. Horne,et al. AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .
[71] R. B. Partridge,et al. Are Young Galaxies Visible , 1967 .